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Abstract

This thesis presents a novel algorithm, called the parametric optimized belief roadmap
(POBRM), to address the problem of planning a trajectory for controlling a robot with
imperfect state information under uncertainty. This question is formulated abstractly
as a partially observable stochastic shortest path (POSSP) problem. We assume that
the feature-based map of a region is available to assist the robot's decision-making.

The POBRM is a two-phase algorithm that combines local and global optimiza-
tion. In an offline phase, we construct a belief graph by probabilistically sampling
points around the features that potentially provide the robot with valuable informa-
tion. Each edge of the belief graph stores two transfer functions to predict the cost and
the conditional covariance matrix of a final state estimate if the robot follows this edge
given an initial mean and covariance. In an online phase, a sub-optimal trajectory is
found by the global Dijkstra's search algorithm, which ensures the balance between
exploration and exploitation. Moreover, we use the iterative linear quadratic Gaus-
sian algorithm (iLQG) to find a locally-feedback control policy in continuous state
and control spaces to traverse the sub-optimal trajectory.

We show that, under some suitable technical assumptions, the error bound of a
sub-optimal cost compared to the globally optimal cost can be obtained. The POBRM
algorithm is not only robust to imperfect state information but also scalable to find
a trajectory quickly in high-dimensional systems and environments. In addition,
the POBRM algorithm is capable of answering multiple queries efficiently. We also
demonstrate performance results by 2D simulation of a planar car and 3D simulation
of an autonomous helicopter.
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Chapter 1

Introduction

1.1 Motivations

Sequential decision-making is one of the central problems in artificial intelligence and

control theory fields [19]. In domains where perfect knowledge of the state of an agent

is available, a Markov decision process (MDP) is effective for modeling the interaction

between an agent and a stochastic environment. Many algorithms have been studied

extensively to find an optimal policy for a small-size to middle-size MDP [31 [29].

These algorithms often model state and control spaces as discrete spaces. However,

in most real world problems such as robot navigation, the state of the agent is not fully

observable at all times, in which case a partially observable Markov decision process

(POMDP) is used to model interactions of the agent. In a POMDP, the system

dynamics are known a priori, similar to an MDP, but the state of the agent must

be inferred from the history of observations. The agent can maintain a distribution,

called the agent's belief distribution, over states to summarize the entire history [19].

The problem of planning and controlling a robot with limited sensors is a challeng-

ing question. In particular, flying unmanned aerial vehicles (UAVs) in GPS-denied

environments such as indoor buildings or urban canyons has received increasing at-

tention from research communities, industry and the military. With limited on-board

sensors such as sonar ranging, laser ranging, and video imaging, UAVs acquire ob-

servations to estimate their positions for decision-making and control. Moreover, the



states and control signals of UAVs are naturally in continuous spaces. Therefore,

solving the problem of UAV navigation in this case inevitably leads to a complex

continuous POMDP [30] [8].

Despite extensive research in recent years, finding an optimal policy in a POMDP

is still a challenge for three main reasons. First, although we can convert a POMDP in

state space to an MDP in belief space, available MDP algorithms for discretized belief

space are computationally expensive even for small problems because the number of

discretized belief states grows rapidly when agents interact with environments over

time [19].

Second, an agent's policy must use available information to achieve the task at

hand, which is known as exploitation, and, at the same time, take actions that further

acquire more confidence in its state, which is known as exploration. Approximate

approaches, such as certainty equivalence (CE), that use MDP algorithms to work on

the means of state estimates instead of the entire belief space do not address well the

balance between exploitation and exploration [33] [1].

Third, other attempts to use gradient-like algorithms with parameterized state

and control spaces are often subject to local minima [19] [3] [29]. Most of current

methods do not directly evaluate the quality of a sub-optimal solution, or the provided

error bound is not tight enough [21]. Therefore, the error bound of a sub-optimal

objective value compared to the globally optimal objective value still remains an open

question.

1.2 Problem statement and objectives

In this research, we consider the problem of planning and controlling a robot to

navigate from a starting location to a specific destination in a partially observable

stochastic world. Abstractly, this problem can be considered as a partially observable

stochastic shortest path (POSSP) problem [3] [4] [34]. The robot operates in envi-

ronments where global localization information is unavailable. Instead, the robot is

equipped with on-board sensors having limited range or field of view to estimate its



positions. Moreover, the robot is able to access to the feature-based map of an oper-

ating environment. Each feature in the map is fully detected with known coordinates.

In addition, the stochastic dynamics of the robot and sensors are given. Under these

assumptions, our approach, the parametric optimized belief roadmap (POBRM), ad-

dresses the above three difficulties to plan and control the robot directly in continuous

state and control spaces.

1.3 Approach and contributions

1.3.1 Approach

The POBRM is a two-phase algorithm, with an offline phase and an online phase.

In the offline phase, we construct a belief graph by probabilistically sampling points

around the features that potentially provide the robot with valuable information.

Each edge of the belief graph stores two transfer functions to predict the cost and the

conditional covariance matrix of a final state estimate if the robot follows this edge

given an initial mean and covariance. The transfer function to predict the cost to

traverse an edge is found by iterative stochastic algorithms, which are based on the

least square curve-fitting method [4]. The transfer function to predict the conditional

covariance of a final state estimate at an incoming vertex is based on the property

that the covariance of the extended Kalman filter (EKF) can be factored, leading to

a linear update in the belief representation [22] [8].

In the online phase, an approximation of an optimal trajectory is found by search-

ing the belief graph using the global Dijkstra's search algorithm. We then refine

the approximated trajectory using the iterative linear quadratic Gaussian algorithm

(iLQG) and find a locally-feedback control policy in continuous state and control

spaces [15]. Thus, the POBRM algorithm combines both local and global optimiza-

tion in the offline and online phases to plan and control in belief space.



1.3.2 Contributions

The contributions of this thesis are three-fold. First, the POBRM algorithm aims at

moving the computational burden of an induced optimization problem into the offline

phase. The offline phase is computed only once for a particular map, and therefore

it will save time in every online Dijkstra's search phase. In addition, the Dijkstra's

search ensures the balance between exploration and exploitation. Compared to other

approaches, the POBRM algorithm is not only robust to imperfect state information

but also highly scalable to apply in high-dimensional systems and large-scale envi-

ronments. Moreover, the POBRM algorithm is capable of answering multiple queries

efficiently.

Second, we prove that if the belief graph contains edges along a globally optimal

trajectory, by using the iLQG in the online phase, the error bound of a sub-optimal

cost compared to the globally optimal cost can be obtained. Thus, in principle,

the POBRM algorithm is able to provide a mechanism to evaluate the quality of a

sub-optimal solution.

Third, to the best of our knowledge, it is the first time in this thesis that the

problem of planning and controlling a six-degree-of-freedom helicopter with coastal

navigation trajectories [25] in continuous spaces is reported.

1.4 Thesis outline

The chapters of the thesis are organized as follows:

* Chapter 2 presents the overview of related work in artificial intelligence and

control theory fields. This chapter introduces the fundamental of Markov de-

cision processes in both fully observable and partially observable cases to solve

this class of problems. In addition, the emphasis of exploitation and exploration

in the partially observable case is presented. Also, related methods in dynamic

programming (DP) such as iterative linear quadratic Gaussian (iLQG) are dis-

cussed. Moreover, advances in mobile robotics, especially UAVs, are introduced.



This chapter also provides the mathematical formulation of the problem under

consideration. An abstract framework with continuous-time and discrete-time

formulations is presented first. Then, concrete system dynamics and sensor

dynamics of a two-dimensional (2D) planar car and a three-dimensional (3D)

helicopter follow.

* Chapter 3 discusses the POBRM algorithm. Most importantly, techniques in

the offline phase and the online phase are developed in detail. In this chapter, we

keep the algorithm in the most generic framework when presenting the iLQG

algorithm to design a sub-optimal controller. When we start constructing a

belief graph for a given feature-based map, we will focus more on the context

of planning and controlling mobile robots. We then provide the preliminary

theoretical analysis of the POBRM algorithm. We show that under suitable

assumptions, the cost of a globally optimal trajectory can be bounded. The

analysis in this chapter can serve as a theoretical basis for future work.

* Chapter 4 presents the results of experiments in simulation. In particular, 2D

experiments simulate a mobile robot in a planar world, and the 3D experiments

simulate a six-degree-of-freedom helicopter. Several results are shown to verify

the theoretical results in Chapter 3.

* Chapter 5 discusses the main conclusions of this research. Also, several future

research directions are suggested.
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Chapter 2

Literature Review and Problem

Formulation

In this chapter, several important research concepts that are relevant to this work are

presented. This review also sets the context for this work. To formulate the problem,

we first state a generic continuous-time formulation, and then present the discrete-

time approximation of the generic system. We next state additional assumptions to

make the problem more tractable in this research, and give an induced optimization

problem. Finally, we present the two-dimensional (2D) model of a planar car and the

three-dimensional (3D) model of a helicopter.

2.1 Sequential decision making

Different research communities often address similar problems that arise indepen-

dently in their fields. This is also the case for the problem of sequential decision mak-

ing in artificial intelligence (AI) and control theory communities. In AI, researchers

want to design an agent that can interact with an outside environment to maximize

a long-term reward function. Traditionally, AI researchers often deal with discrete

spaces in problems such as playing chess. Similarly, in control theory, researchers want

to autonomously control a system in a certain environment to optimize some criteria.

Researchers in this field often deal with continuous problems such as controlling a



mobile robot or guiding a missile [19].

Nevertheless, the above problems in AI and control theory share much in common.

There are corresponding terminologies between Al and control theory. In particular,

the terms agent, environment, and maximum reward in AI correspond respectively

to controller, plant, and minimum cost in control theory [19]. In fact, recent research

trends use techniques in both fields to address hard problems such as path planning

and control for a mobile robot. One of these techniques is based on dynamic program-

ming from which a large variety of algorithms have been developed to address different

characteristics of different problems. We will overview these techniques subsequently.

2.1.1 Markov decision process

Time t t+2

Figure 2-1: Graphical representation of an MDP (image courtesy of Nicholas Roy).

As mentioned in Chapter 1, a Markov decision process (MDP) is a common model

of sequential decision making problems in both AI and control theory. An MDP is

a model that specifies how an agent interacts with a stochastic environment with a

known transition model. The components of an MDP are [24]:

* A set of states S,

* A set of actions A,



* A set of transition probabilities T : SxAxS -+ [0, 1] s.t. T(s, a, s') = P(s'ls, a),

* A set of reward functions R : S x A -R,

* A discount factor y,

* An initial state so.

Figure 2-1 depicts graphically how these components relate with each other in an

MDP. As can be seen here, at each state, the agent chooses an action, which results

in a reward value and causes the state to change. The posterior state obeys the

stochastic transition probability T. Furthermore, this figure also illustrates that the

system is a first-order Markov graph. In other words, the distribution of a future

state value depends only on the current state value and control input but not past

state values and control inputs (Definition 2.1.1, 2.1.2).

Definition 2.1.1. (Markov property) If x(t) and u(t) are two stochastic processes,

the Markov property states that, with x, X E S, and u E A,

P [(t+h) = X(t+h) x(s) = (s), u(s) = v(s), Vs t]
=P[x(t+h)=x(t+h)x(t)=x(t),u(t) =u(t v(t)], Vh>0.

Definition 2.1.2. (Discrete-time Markov property) If Xk and Uk are two discrete

stochastic processes, the Markov property states that, with x, X E S, and u E A,

P [Xt+h = Xt+hX = Xs, Us = v,Vs < t]

=P[Xt+h= Xt+h zXt = t, Ut =Vt] , Vh>0.

Methods to solve an MDP are investigated extensively in [3] [29] [4]. Notable meth-

ods are value iteration and policy iteration, which are based on Bellman's equation.

The value iteration method iteratively finds the optimal objective values associated

with possible states. From this value function, a suitable policy is then retrieved.

Alternatively, the policy iteration method iteratively finds an optimal control policy



by evaluating the current policy and making policy improvements. Recently, Wang

et al. have proposed a dual approach that explicitly maintains a representation of

stationary distributions as opposed to value functions to solve an MDP [36] [35]. This

yields novel dual forms of the value iteration and policy iteration.

2.1.2 Partially observable Markov decision process

]

Figure 2-2: Graphical representation of a POMDP (image courtesy of Nicholas Roy).

Although an MDP is suitable for problems whose states are observable at all times

such as playing chess, it is insufficient to model problems whose states are not directly

observable. In such cases, a POMDP, which has additional observations, is suitable

for modeling those problems [19] [24]. Components of a POMDP are:

* A set of states S,

* A set of actions A,

* A set of transition probabilities T : SxAxS S- [0, 1] s.t. T(s, a, s') = P(s'ls, a),

* A set of observations Z,



* A set of observation probabilities O : S x A x Z F [0, 1] s.t. O(s, a, z) =

P(zls, a),

* A set of reward functions R : S x Ax Z ý R,

* A discount factor y,

* An initial state distribution P(so).

Compared to an MDP, there are an addition set of observations Z and corresponding

probabilities. Again, these components can be represented graphically in Figure 2-2.

As can be seen, black states are inside the shaded box to denote that they cannot be

directly accessed but must be inferred from the history of observations. Therefore,

these states are called hidden states.

Methods that solve a POMDP with discrete states, discrete actions, and discrete

observations are discussed in detail in [19] [30] [24]. The simplest approach is also

based on Bellman's equation [30], which computes a sequence of value functions, for

increasing planning horizons. At each horizon, the value function is represented as a

piece-wise linear function, where the number of linear pieces increases rapidly with

the horizon length. Point-based Value Iteration (PBVI) [21] [28] can be applied to

prune unnecessary components. Using the PBVI method, Pineau et al. provide the

error bound over multiple value updates, which depends on how dense the samples in

the belief space are [21]. Kurniawati et al. have recently proposed a new point-based

algorithm SARSOP, which stands for successive approximations of the reachable space

under optimal policies [11]. This algorithm exploits the notion of optimally reachable

belief space to compute efficiently.

To avoid the intractability of the exact POMDP value iteration, the belief space

can be gridded using a fixed grid [17] [5] or a variable grid [6] [38]. Value backups are

computed at grid points, and the gradient is ignored. The value of non-grid points

are inferred using an interpolation rule.

There is a popular heuristic technique QMDP [16] that treats a POMDP as if it

were fully observable and solves a related MDP. The QMDP algorithm can be effective



in some domains, but it will fail in domains where repeated information gathering

is necessary. Heuristic search value iteration (HSVI) [27] is an approximate value

iteration method that performs local updates based on upper and lower bounds of

the optimal value function. Alternatively, forward search value iteration (FSVI) [26]

is a heuristic method that utilizes the underlying MDP such that actions are chosen

based on the optimal policy for the MDP, and then are applied to the belief space.

Other approaches employ approximation structures, including neural networks, to

compute the value function or control policy for a subset of states and infer corre-

sponding values for the rest of states [19]. Overall, these methods are computationally

expensive.

Approaching from the local solution point of view, Li and Todorov have recently

proposed the iLQG algorithm [13] [14] [15] to address the problem of control in

partially observable environments, which can be regarded as a POMDP. The main

idea of the iLQG algorithm is to find a sub-optimal control policy around the vicinity

of some nominal trajectory instead of an optimal control policy for the entire state

space. The nominal trajectory is iteratively refined to approach an optimal trajectory

under some technical conditions. This method can provide a reasonable solution

within an acceptable running time, which makes it attractive in real-time applications.

2.1.3 Exploration versus exploitation

The reason a POMDP is harder to solve than is an MDP is clearly because of the

inaccessibility of the true state of a system. While an action in an MDP is chosen

to maximize some reward function directly, an action in a POMDP balances two

purposes: maximizing the reward function and gaining more confidence in its states.

These two purposes were mentioned as exploitation and exploration in Chapter 1.

Tse et al. first mentioned the trade-off between exploitation and exploration

in their series of papers in the 1970s [33] [1]. They called this the dual effects of

caution (exploitation) and probing (exploration). On one hand, at any moment, if

a controller focuses only on the current task, it will prefer a greedy way to achieve

the task, but there will be a large uncertainty about accomplishing the task. On



the other hand, at any moment, if the controller focuses totally on gaining more

confidence about its current state, the controller will seek actions providing more

state information without accomplishing the current task. The optimal controller

should balance between exploitation and exploration with the appropriate definition

of an objective function. This balance has been examined by many others [29] [18],

but as we will show in Chapter 3, in this research, we aim at balancing these two

factors during the online phase of the POBRM algorithm with the assistance of the

offline phase.

2.2 Advances in mobile robotics

The problem of making an autonomous mobile robot has been studied extensively

by both AI and control theory control communities. Several fundamental methods,

with many unique characteristics in the robotics field, are presented in [30]. Tradi-

tional robot planning methods like the Probabilistic Roadmap (PRM) algorithm [10]

assumes full accessibility of all parameters and dynamics of the robot and the envi-

ronment. Since robots are becoming more and more autonomous but have limited

sensors, such powerful accessibility is not always available.

In fact, controlling mobile robots in partially observable stochastic environments

is still an on-going research topic. When maps are not available, the fundamental

task is to determine the location of environmental features with a roving robot. This

is called the simultaneous mapping and localization (SLAM) problem [30] [31]. With

a given map, performing autonomous navigation is still challenging. Recently, Roy

et al. [22] [8] [25] proposed the coastal navigation trajectories to make use of an

available map to plan a set of waypoints to a destination. In their work, the main

idea is inspired by the ship navigation in the ocean. That is, a ship should navigate

along the coast to gain more confidence instead of taking the shortest trajectory

with large uncertainty about reaching a destination. These methods can efficiently

plan a sub-optimal trajectory even in large-scale environments. However, they only

consider minimizing the final uncertainty at a destination but not consumed energy.



Furthermore, they do not provide a corresponding control law to follow this trajectory.

In this thesis, we use a similar strategy to plan a sub-optimal trajectory, and at

the same time, we provide a sub-optimal control law to follow this trajectory with

more complex objective functions. Moreover, there is an important emerging research

direction to learn all parameters and dynamics of robots and environments. This class

of methods is within the regime of neuro-dynamic programming [4], or reinforcement

learning [29]. In this research, although we assume robot dynamics and environments

are given, we still apply some of these methodologies to learn part of the cost objective

values.

Among many applications of autonomous robots, unmanned aerial vehicles (UAVs)

have great potential. In particular, autonomous helicopters or quad-helicopters are

useful in missions such as rescuing, monitoring, tracking due to their flexible flight

dynamics and simple support infrastructure. Autonomous UAV flight in outdoor

environments without GPS signals like forests is illustrated in [12]. It has been

demonstrated that a controller can be designed to perform advanced and compli-

cated maneuvers like inverted hovering [20]. The study of the flight dynamics of a

quad-helicopter is presented in [9]. In this work, we show how the POBRM algorithm

is applied in controlling a six-degree-of-freedom quad-helicopter with simplified flight

dynamics in GPS-denied environments, as presented in Chapter 4.

2.3 Generic continuous-time problem

We consider a stationary continuous-time non-linear stochastic dynamic system gov-

erned by the following ordinary differential equation (ODE):

dx(t) = f(x, u)dt + dw(t), (2.1)

where

* x(t) E X C RW" is the state of the system and summarizes past information

that is relevant for future optimization,



* u(t) E U C R n~ is the control input, or decision variable, to be optimized at

any time instant t,

* w(t) E RIn is Brownian noise,

* f : R nx+ nI " ý R"n is a non-linear function of the state and control input.

In the above system, the state x(t) is an element of a space X that represents state

constraints. For instance, in the usual flight of a quad-helicopter, X is the set of poses

with the pitch angle less than 60 degree. Similarly, the control u(t) is an element of a

space U that is a set of admissible controls. It is worthwhile pointing out that states

x satisfy the Markov property, which is mathematically stated in Definition 2.1.1.

Moreover, the state of the system is partially observable, and must be inferred

from measured observations generated according to

y(t) = g(x) + (t), (2.2)

where

* y(t) E Rn1 is the measurement output of the system,

"* 9(t) E R" , is Brownian noise,

* g : R -+ a R' Y is a non-linear function of the state.

Eq. 2.2 represents one sensor model. If a robot has many different sensors, there are

several models to describe these sensors.

We are interested in finding a feedback control law 7r* that minimizes the follow-

ing objective function, also called the cost-to-go function, from starting time 0 to

unspecified final time T given an initial observation I(0) = y(O) of a starting state

x(0):

(I(0)) = E [h(x (T)) + T  (t, x(t), r(t, I(t)) dt I(O) , (2.3)

7* = arg min J7(I(0)), (2.4)Hi



where

* h(x(T)) is the final stage cost,

* £(t, x, u) is the instantaneous cost with control u(t) at state x(t),

* u(t) = 7r(t, I(t)), with 1(t) = {y(0..t), u(O..t-)},

* II is a set of admissible control laws 7r.

The conditional expectation is taken over the conditional distribution of x(0) given

I(0), and noise processes w, t9. The information I(t) stores all measurements up to

and including the current measurement as well as all past control inputs. Using this

information storage, a feedback control law 7r decides a control signal at the time

instant t through u(t) = ir(t, I(t)). As this formula reads, this is a non-stationary

control law that may vary with respect to time.

We can consider this problem as a partially observable stochastic shortest path

problem (POSSP) in which we find a trajectory that minimizes the sum of traveling

and terminating cost to final absorbing states. Due to stochastic environments, the

shortest trajectory varies depending on the realizations of random factors in environ-

ments.

2.4 Approximated discrete-time problem

The above continuous-time formulation captures the continuous nature of many en-

gineering systems. However, in order to design optimal or sub-optimal control laws,

the approximated discrete-time formulation is considered instead. In particular, each

time step lasts A seconds, and thus the control horizon is N = . Eq. 2.1 and Eq.

2.2 can be approximated as:

Xk+1 Xk +f(k, Uk)A + WkVf, k = 0,1,..., N - 1 (2.5)

Yk = (k) + k, k = 0, 1, ... , N (2.6)



where Xk E X C Rnx, Uk E U C Rn. yk E Rny, Wk E Rnwn, and '~k E R  are

samples of state, control, measurement, system noise, and measurement noise values

respectively. Indeed, the discrete stochastic process x satisfies the Markov property

in discrete-time domain (Definition 2.1.2). In addition, we note that in Eq. 2.5, the

Ito integral of Brownian noise w(t) over a duration A is approximated as wk/A [32].

An information storage I(t) is also approximated as a vector Ik that stores sampled

measurements and sampled control signals to design a feedback control law 7r:

Ik = [Yo, Y ... )Yk, UO, U0 , --., Uk-1] (2.7)

As discussed in Section 2.3, we want to find a feedback control law r that is

non-stationary. Thus, a discrete time control law rx consists of N information-control

mappings for N time steps:

7 = { P0, A1, ... , N-1}, (2.8)

Uk = [tk(Ik). (2.9)

Finally, the objective function and an optimal control law can be approximated

by the formulae:

Jr(Io) = E h(XN) + Z k(Xk, k(1k)) I0 , (2.10)
k=0

7r* =arg mn J,(Io). (2.11)

In Eq. 2.10, the integral of instantaneous cost over a duration A is approximated as

£k (Xkk (Ik)) = e((k - 1)A , x k(Ik))A-

2.5 Statistical assumptions

Before finding a solution to this problem, to make the system tractable, we consider

the following statistical assumptions of Brownian noise processes w and V, and an



initial state xo:

* Wk and tk are independent of state Xk and control uk for all k,

* wk is independent of Ok for all k,

* Wks are i.i.d with a Gaussian distribution N(O, Qw),

" 9ks are i.i.d with a Gaussian distribution N(O, Qo),

* x0 has a Gaussian distribution N(xzo, A), where x0 is a mean value.

These assumptions of independent Gaussian distributions enable rich probability ma-

nipulations and inferences such as the Kalman filter and its variants [37]. In partic-

ular, we only need means and covariances to describe these Gaussian distributions.

Thus, they provide us with computationally feasible methods to handle probability

density distributions over complex transformations.

I

4k-1

Figure 2-3: System evolution of the considered problem as a POMDP.



2.6 Optimization problem

With the above discussion, the problem under consideration can be expressed as the

following constrained optimization problem:

minE h(N) + E (Xk, Uk) 0 (2.12)
k=O

subject to:

Xk+l =Xk + f(Xk, Uk)A + Wkvi, k = 0, 1, ..., N - 1 (2.13)

yk = g(xk)+ lk, k = 0, 1, ... , N (2.14)

Ik = [yO, Yl, ... , ,0, U1, UOU...,) Uk-1], (2.15)
Uk = IYk(Ik), (2.16)

7r = {A0o1, , .,, N-1}, (2.17)

xk E X C Rn,Uk EU C R"U, Yk E Rfn E, wk E Rn,1 k E I nR, (2.18)

wk e N(O, Q"), 9k N(0, •"), xo x N(xo, Ao), 1o = o. (2.19)

Figure 2-3 shows the evolution of this discrete-time system. As we can see, this

structure resembles the well-known POMDP structure in literature. The nodes in the

shaded rectangle are hidden states and noises, and the nodes outside this rectangle

are the accessible measurements and control inputs.

This optimization problem is generally complex, and it is hard to find an optimal

feedback control law to attain the minimum objective cost. Thus, in this research,

we will look for a sub-optimal control law instead. Furthermore, we note that in

this POSSP, the horizon N is unspecified. Nevertheless, for certain problems, we can

exploit their structure to determine the horizon N heuristically, which we will show

using the POBRM algorithm in Chapter 3.



2.7 2D model of a planar car

In this subsection, we discuss the concrete model of a planar car, which provides the

dynamics and measurements of the car by a continuous-time formulation in Section

2.3. The content in this subsection is presented in detail in [30). Thus, the brief and

simplified motion and sensor models are presented here.

2.7.1 Motion model

The pose of the car, consisting of an x-y location and a heading 0, operating in a

plane, is depicted in Figure 2-4. We regard the pose information of the car as the

system state:

x(t) = (2.20)

The control input for the car has two components, namely a translational velocity v

and a rotational velocity w:

u(t) = (2.21)

We can have additional constraints to restrict these velocities in a certain range U:

u(t)E U.

When applying a control u(t) to a state x(t), the system follows the following

dynamics:

d(x(t)) = f(x, u)dt + dw(t) (2.22)

v cos(0)
= v sin(0) dt + dw(t). (2.23)
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Figure 2-4: Car pose in the X-Y plane.

2.7.2 Feature-based map and sensor model
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Figure 2-5: An example of a feature-based map.
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Figure 2-5 shows an example of the typical map of an area in which the car

may operate. Black objects are obstacles, and red dots are landmarks, or features.

The green star is a starting location, and the red star is a destination. The area

contains rich information for the car such as corners of buildings, walls, doors, and

windows. These objects are called landmarks in a feature-based map. With a given

feature-based map, the POBRM algorithm will exploit the map structure to solve the

optimization problem in Section 2.6.

The car is equipped with sensors to work in the area. For a certain landmark

locating at [mX my]T in that area, the car can sense the distance and relative bearing

to the landmark if it is within the visibility region of the car. We assume that when

the car senses the landmark, it knows the landmark's coordinates. Depending on the

car's location, at any instant of time, the car can receive no measurement, or a list

different measurements from several landmarks. The measurement model is described

by

if (m - x) 2 + (m - y) 2  R (2.24)

y(t, m) = g(x, m) + V(t) (2.25)

(mx - X)2 + (my- y)2 1 +3(t), (2.26)
atan2(my - y, mX - x) - 0

where Rm is the range of visibility of the car for that landmark.

2.7.3 Cost model

We want to find an optimal trajectory from a starting location to a destination with

the final state ZG. The final stage cost function and instantaneous cost function are

h(x(T)) = (x(T) - XG)TQ(T)(X(T) - XG), (2.27)

£(t, x(t), u(t)) = u(t)TR(t)u(t), (2.28)

Q(T) >- 0, R(t) >- 0. (2.29)



The weight matrices Q(T), R(t) are symmetric positive definite. Using these cost

functions, we penalize large deviations from the final state Xe and prefer trajectories

with low energy consumption that reach the destination. Moreover, there is a trade-

off between these cost components by setting different weight matrices Q(T) and

R(t).

2.8 3D model of a helicopter

In this subsection, we show how the optimization problem in Section 2.6 can be

used to control the simplified dynamics and measurements of a six-degree-of-freedom

(6-DOF) quad-helicopter. For other complex models of aerospace vehicles and quad-

helicopters, readers can refer to [39] and [9].

2.8.1 Motion model

To define the dynamics of the helicopter, we have to work in the North-East-Down

(NED) inertial coordinate system, and the body coordinate system, as shown in

Figure 2-6. The NED coordinate system embeds its XE and YE axes into a horizontal

plane and points ZE axis downward according to the right hand side rule with the

fixed origin. The body coordinate system is aligned with the helicopter triad with the

origin at the center of gravity (COG) of the vehicle. The XB axis points through the

noise of the vehicle, and the YB axis points out to the right of the XB axis. Finally,

the ZB axis pointing downward completes the coordinate system.

The x-y-z locations are defined in the NED coordinate system, while the yaw V,

pitch 0, and roll q angles are defined as rotational angles from the NED coordinate

system to the body coordinate system. We define the state of the helicopter as follows:

x(t)= x y z t y V) 0 0 (2.30)

where [ jy i]T is the velocity of the helicopter.

Controlling the 6-DOF helicopter involves the details of translational dynamics
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Figure 2-6: Free body diagram of a quad-helicopter.

and attitude dynamics. On one hand, translational dynamics describes trajectories of

x - y - z points under external forces as recorded by an observer. The Newton's law

is a key tool to obtain translational dynamics. On the other hand, attitude dynamics

describes how the vehicle rotates under external forces. The Euler's law is a main

tool to obtain the dynamics of Euler angles 0, 0, and 0.

In this research, to keep the model simple, we assume that angle velocity can be

controlled directly. Thus, we concern only with the Newton's law but not the Euler's

law under external forces. Moreover, we also assume that the thrust generated does

not depend on voltage power left on the helicopter. The control input is expressed as

;·



follows

u(t)= [T T t (2.31)

(2.32)T > Tmin > 0,

where T is nonnegative thrust with minimum thrust Tin, [ 0 T is rotational

velocity. The transform matrix to rotate from the body coordinate system to the

NED coordinate system is given by

[T]EB = [-V]zB [-0]YB [-1]XB

cos -sin 0 cos 0 0 sin 0 1

= sin) cos 0 0 1 0 0

0 0 1 -sin0 0 cos0 0

cos 0 cos 0 - sin V cos 0 + cos 0 sin 0 sin 0

= sin 0 cos 0 cos 0 cos 0 + sin b sin 0 sin q

- sin 0 cos 8 sin 0

0

cos ¢

sin

0
- sin q

cos J

(2.33)

(2.34)

sin ' sin 0 + cos ' sin 8 cos

-cos o sin + sin o sin 8 cos

cos 0 cos J
(2.35)

As shown in Figure 2-6, given M is the weight of the helicopter, we assume that an

applied thrust is perpendicular to the helicopter body plane going through its COG.

In addition, the velocity of the helicopter is small enough so that the drag force

is proportional by a coefficient k and in an opposite direction to the translational

velocity of the helicopter. By the Newton's law, we have:

[T]EB 0 T + 0 Mg - k = M

T(- sin 4 sin 4- cos 4 sin 0 cos ) ] -ki M= ,

T(cos 0 sin 0 - sin 0 sin 0 cos ) + -k = M

-T cos O cos 0 J Mg - ki MJ

(2.36)

(2.37)



T (- sin i sin -- cos i sin 0 cos q) - -i

T (Cos V sin $ - sin ) sin 0 cos ) -

Scos 0 cos 0- + g

Thus, the helicopter dynamics are described by

d(x(t)) = f(x, u)dt + dw(t)

y

T (- sin sin ¢ - cos sin 0 cos ) -

S(cos V sin ¢ - sin sin 0 cos b) - -L
- cos 0 cos -z+ g

dt + dw(t).

2.8.2 Sensor model

Similar to the 2D case, the feature-based map of an operating area is given. The

helicopter is equipped with sensors to measure a distance to a landmark, and its

translational velocity when the landmark is within its visibility. Moreover, as the

pitch and roll angles are local knowledge of the helicopter, we assume that the heli-

copter can sense the pitch and roll angles at any time using gravity and a three-axis

accelerometer. In addition, we assume that the helicopter can estimate the yaw angle.

These two components of measurement are described by

if V(m•- x)2 + (my -y)2 + (m~z- )2< Rm:

Yl(t, m) = gl(x, m) + '0 1(t)

(2.41)

(2.42)

(2.43)

z

(2.38)

(2.39)

(2.40)



v/(Mx - x)I + (m - y) + (z - z)

+•Z1 (t), (2.44)

and

y2(t) = g2(x) + 92 (t) (2.45)

- 0 + t 2(t), (2.46)

2.8.3 Cost model

Similar to the 2D car, we also find an optimal path from a starting location to a

destination with the final state ZG. The final stage cost function and instantaneous

cost function are

h(x(T)) = (x(T) - G )TQ(T)(x(T) - XG), (2.47)

£(t, x(t), u(t)) u(t)TR(t))u(t), (2.48)

Q(T) > O, R(t) >- 0. (2.49)
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Chapter 3

POBRM Algorithm

In this chapter, we discuss in detail how to solve the optimization problem defined

by Eq. 2.12 to Eq. 2.19 in Section 2.6. We start with the framework of dynamic

programming (DP). The overview of the extended Kalman filter follows. Then, the

iterative Linear Quadratic Gaussian (iLQG) algorithm is presented. After that, the

offline and online phases of the POBRM algorithm are discussed. We attempt to

provide a preliminary analysis of the POBRM algorithm. There are several sources

of error that affect the accuracy of a returned sub-optimal solution. Next, we argue

that, under special assumptions, it is possible to bound the optimal solution.

3.1 The framework of DP

The basic framework of dynamic programming, in which decisions are made in stages,

is well studied in [3]. We notice that the formulated POSSP in Section 2.6 has a

suitable structure to be solved by DP. The world of DP related algorithms such as

MDP, POMDP, and Neuro-DP, as reviewed in Chapter 2, is vast. Hereafter, the usual

case of fully observable DP is presented, and the extended partially observable DP

follows.



3.1.1 Fully observable case

The decision making problem in a fully observable environment is described by

min E h(xN) + E k(Xk, Uk) XO (3.1)
k=O

subject to:

Xk+1 = k +f(k, k)A WkV , k = 0, 1,..., N - 1 (3.2)

Uk = lk(Xk), (3.3)

7r = {Lo, 1i, ..., LN-1 }, (3.4)

Xk X c_ • I, UkE U c_ R•n , wkE IR n , (3.5)

Wk N(O, Qw). (3.6)

The notations in Eq. 3.1 to Eq. 3.6 have the same meanings as their counterparts

in Eq. 2.12 to Eq. 2.19. However, this formulation is much simpler as it formulates

an MDP. First, all states of the system are directly accessible, thus no measurement

output is needed. Second, an admissible feedback control input at any instant of time

is a function of a state. Third, an objective function is evaluated given an observable

starting state.

The DP framework is based on the following lemma called the principle of opti-

mality proposed by Bellman.

Lemma 3.1.1. (Principle of optimality [3]) Let 7* = {J*, j*, ..., u, 1} be an optimal

policy for the above problem, and assume that when using r*, a given state xi occurs

at time i with positive probability. Consider the subproblem whereby we are at xi and

minimize the objective function from time i to time N

E h(xN) + E k(Xk, Uk) I Xi
k=i

Then the truncated policy {f;, Ai+x, .., A*N- I} is optimal for this subproblem.



Proof. Since ir* is an optimal policy, the cost objective J* induced by lr* is the small-

est. If the truncated policy is not optimal for the subproblem, let {p , 4,..., A'_, }

be an optimal sub-policy. Then the new policy ',' = {pi, D, ..., i4_-1~ A, A4,) ... , 7A_-1}

yields a smaller value of the original objective function than J*, which is a contradic-

tion. 0

Using Lemma 3.1.1, it can be proved by induction that the optimal cost for the

basic fully observable DP problem can be computed backward as in the following

theorem [3]:

Theorem 3.1.1. Denote:

N-1

J,(xo) = E h(xN) + fk(X k,Uk)

k=0

J*(xo) = Jr-.(o).

For every initial state xo, the optimal cost J*(xo) is equal to Jo(xo), which is given

by the following formulas for k from N - 1 down-to 0:

JN(XN) = h(xN), (3.7)

Jk(k) = min E [ek(Xk,uk)+ Jk+1(k+1) kk] , k = N- 1, N- 2,..., 1, 0.

(3.8)

Furthermore, let u* be a minimizer of the Eq. 3.8, and we assign IU*(xk) = u* for

every Xk and k, then the policy lr* = {p/, ..., C*-_} is optimal.

In Eq. 3.8, we have a minimization problem over a feasible set Uk(xk), which is a

subset of U. This feasible set depends on the current state xk because only control

inputs in U that produce Xk+1 in X are acceptable.



3.1.2 Partially observable case

Let us turn our attention back to the DP framework in a partially observable envi-

ronment. For the purpose of clarity, we restate the formulation here:

min E h(XN) + : ek(Xk, Uk) Io (3.9)
k=0

subject to:

Xk+l = Xk + f(Xk, Uk)A + WkVA, k = 0, 1,..., N - 1 (3.10)

Yk = g(xk) + ?k, k = 0, 2,..., N (3.11)

Ik = [YO, Y1, ..., 0 Yk, U1 *, ..., Uk-], (3.12)
Uk = IAk(Ik), (3.13)

1 = {07, ,--, .7 N-1}, (3.14)

Xk - X CE RXnx, Uk U C R]nu, YkE R no , Wk E R n-, Ok E R•n, (3.15)

Wk - N(0, I•), 'Ok , N(0, 7Q), xo , N(xo, Ao), Io = YO. (3.16)

The Theorem 3.1.1 cannot be applied directly to this formulation due to the

inaccessibility of states x. However, it is possible to reformulate the problem to

become fully observable with respect to new information states I, control inputs u,

and random disturbances y:

10 = YO, (3.17)

Ik+ = [Ik, uk, k+1], k = 1, 2, ..., N - 1. (3.18)

To see this, we first show that Ik satisfies the Markov property.

Lemma 3.1.2. With the dynamics of variables as defined in Eq. 3.9 to Eq. 3.18, the

discrete stochastic process Ik obeys the Markov property.



Proof. From Eq. 3.18, we note that Ik is part of Ik+1 for all k, thus

P [Ik-1, Uk-1, *.. , U0 k, Uk, ..**, I0, o] =1.

Therefore the following conditional probability holds:

P [Ik uk, Yk+1 Ik, Uk]
U0] =

P [Ik-1, Uk-1, - Io, uo0Ik, Uk, ... , IO UO]

= P [Ik, UYk+ 1Ik, Uk]

Again, From the dynamics of Ik+1 in Eq. 3.18, it follows that

P [Ik+1 Ik, k]

Corollary 3.1.1. Let X be any random variable:

E [XII , = E [XI] , forj < i.

This corollary states that the expectation of a random variable depends only on

the current information vector but not past information vectors.

have the following facts:

Fact 3.1.1. Two common iterative expectation rules:

* Let X, Y, Z be random variables:

Furthermore, we

E[XY] = E [E[XIY•, Z] Y]. (3.19)

* Let X, Y, Z be random variables:

E [E[XIY] + Z Y]= E[X+ZY]. ZY

P [Ik, Uk, yk+1 7 Uk ,u, ... Io

(3.20)

= [1,,k1 k Uk, -, oO] -



Using these corollary and facts, the following theorem shows how the DP frame-

work works in a partially observable environment.

Theorem 3.1.2. Denote:

J(lo) = E h(XN) + E £k (k) Uk) I10

J*(Io) = 4J(lo).

For every initial information Io, the optimal cost J*(Io) is equal to Jo(Io), which is

given by the following formulas for k from N - 1 down-to 0:

JN(IN) = EN [h(xN) IN] , (3.21)

Jk(Ik) = min Exk,k,yk+l k (k, k) + Jk+1 (Ik+) Ik, k = N - 1,..., 0.Uk EUk(Ik)

(3.22)

Furthermore, let u* be a minimizer of the Eq. 3.22, and we assign tL*(Ik) = u4 for

every Ik and k, then the policy lr* = {I*, ..., * N-1 } is optimal.

Proof. First, we rewrite the objective function in terms of information state Ik as in

a fully observable case:

N-1

Jr(Io) = Exo,Xl..N h(xg) + E fk(Xk, uk k)10 (3.23)
i=0

= EII..N EXN [hN(XN) I IN] + E Ek,, [Ek(xk, Uk)k, U] 0 (3.24)
i=0

= EIN..Nh(I + hNkN ksi(I 7k 0 (3.25)
i=0

where the first equality is obtained using the iterative expectation rule in Fact 3.19 and

reducing the inner conditional expectation using the Markov property in Corollary



3.1.1 with shorthands:

hN(IN) = EXN [hN(N)II ] N] (3.26)

k (Ik, k) = Ex, [k (k, Uk)l , Uk] (3.27)

Therefore, now we can express the cost function as the newly set-up fully observable

system:
N-1

J,(Io) = EIl..N h(I) + Ik, Uk)Io (3.28)
i=0

Hence, the DP framework in Theorem 3.1.1 with respect to Ik is applied to have

J*(Io) = Jo(Io) from the following system of equations:

JN(IN) = hN(IN)= ExN [hN(xN) IN] (3.29)

Jk(Ik) = min Eyk+1 [k(Ik Uk)+ J(k+ 1)Ik+l Ik (3.30)
ukEUk(Ik) L J

= min EYk+1,Xk, [k (Xk I Uk) +1Jlk+1 kI+Uk ,  (3.31)

(3.32)

where the last equality uses the expectation rule in Fact 3.20.

In addition, an optimal policy can be constructed accordingly. O

3.2 Extended Kalman filter

The above backward recursion system in Theorem 3.1.2 is generally complex to solve

as the dimension of states I increases over time. So, out of all information en-

capsulated inside Ik, we would like to keep only the useful information. This is

where the assumptions of Gaussian distributions in Section 2.5 come into place. In

this case, we try to keep conditional means Xk = E[xk lk] and conditional covari-

ances Ak = Var[xk Ik] using the Extended Kalman filter (EKF). The EKF has been

well studied in literature [30] [23], as an approximation to the Kalman filter [23] in



non-linear domains by linearizing the dynamics of systems and measurements. The

summary of how the EKF works is described in the following theorem.
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b. Error ellipsoid propagation in the update step

Figure 3-1: The extended Kalman filter.
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Theorem 3.2.1. (The extended Kalman filter) Assume that the system together with

its measurement output is described by

Xk+1 = Xk + f(Xk, Uk)A + Wk/, k = 0, 1, ..., N - 1 (3.33)

Yk = g(xk) + ?k, k = 0, 1, ..., N. (3.34)

Assume that a control input Uk at time k is given. The conditional mean Xk+l and

conditional covariance Ak+1 of a system state at time k + 1 after observing a mea-

surement Yk at time k are computed recursively via the following two steps:

Predictive step:

k+1= k + f(k, k)A, (3.35)
Of

Ak = I + A, (3.36)OX = • k,Uk

k+1 = AkkA' + AQw. (3.37)

Update step:

Fk+1 -dg (3.38)F+ k+1

Kk = Ak+ 1Fk+l(Fk+lAk+4Fk+ + Q)- 1, (3.39)

Xk+1 = -+1 + Kk(y±+1 - g(k+1 )), (3.40)

Ak+1 = +1 - KkFk+1Ak+1. (3.41)

Information form: Alternatively, we can maintain the information form of the

EKF, which stores and updates the inverses of conditional covariances and informa-

tion vectors v as:

= (A-+)-1 (3.42)
( k+1 (Ak+1 A )+1, (3.42)

(Ak+1)- 1 = (Ak kA'k )-1, (3.43)



'k+1 = F+j (Qv-1yk+1 + Vk-+1, (3.44)

A- 1 = (Ak+ 1)- 1 + F+1v)-Fk+. (3.45)

The interpretation of the EKF is depicted graphically in Figure 3-1. As we can

see, the ellipses represent the contour of equal probability around the means. The

dashed lines depict the dynamics of the mean values, while the solid lines represent

the actual values of random variables.

The following lemma and Theorem provide another way to update covariance

matrices.

Lemma 3.2.1. (Inversion lemma)

(A + BC-1)-1 = (ACC - 1 + BC-1)-1 = C(AC + B)-1

Theorem 3.2.2. If a conditional covariance is factored as Ak = BkC- 1, the predictive

conditional covariance in Eq. 3.37, and the update conditional covariance in Eq. 3.41

can be factored as

Ak+1 - k+ (+) -1, (3.46)

Ak+1 = Bk+lCk+1,  (3.47)

where

* B+1, and C4+1 are linear functions of B' and Ck

* Bk+1 and Ck+1 are linear functions of 8+ 1 and Ck+1.

Proof. From Ak = B3 kC-l,using the inversion lemma, we have:

A+1 = AkA'k + A'l (3.48)

= AkBkCk-'A' + AOw (3.49)

S((AkBk) ((Ak)-lCk)l+ A-1 w)-1  (3.50)

((A'k)-LCk) (A•(Ak)-Ck + AkBk) -1 (3.51)



= (A (A')-1ck + Akl8 ) ((A)-1Ck) -1  (3.52)

= B•+•(C-+ 1)-1, (3.53)

where

1 [ Ak AQw(A)-1 Bk [kk+ k (3.54)

Using the information form and applying the inversion lemma again, we have:
)-1

Ak+1 = (A )-1 + F+(2)-1Fk+1) (3.55)

( 1(L,( ±1 )-1 + Fk+l(Qv)-l Fk+l (3.56))-1
k+ (k+)- 1  3+- 1 •+l k+l (3.56)

Sk+1 (F+l (v)-1 k+lk+l1  ck+)-1 (3.57)

= Bk+ lCkl, (3.58)

where

k k+1 I 0 B- B_,
k)1 [ I Ik+1] . (3.59)

Ck+1 F+1 (v)-Fk+l I +1 +1

Obviously, [I-+,] and [6k+l] are linear operators whose values depends only on control

inputs and received measurements. O

3.3 iLQG algorithm

This section focuses on the main tool, called the iLQG algorithm, to find a sub-

optimal control policy for subproblems in POBRM. The iLQG algorithm is proposed

by Weiwei Li and Todorov [15], which is relevant to the work by Tse [33] . We will

present the iLQG algorithm with some slight changes from the Li's version. The DP

framework for partially observable environments (Theorem 3.1.2) is used to obtain a



sub-optimal control policy with the assistance of the EKF (Theorem 3.2.1).

In the discussion of the iLQG algorithm, we keep the cost function in the general

form J,(10) = E [hN(N) + 1 ik(Xk , Uk) 110] instead of the proposed functions

for a planar car or a quad-helicopter in Section 2.7 and Section 2.8. Moreover, the

form of hN(XN) and ek(Xk, Uk) may not necessarily be quadratic. In fact, we will

formulate suitable forms for these functions to solve different subproblems in the

POBRM algorithm.

With non-linear system dynamics and possibly a non-quadratic cost function, the

iLQG algorithm linearizes the system dynamics and approximates the cost function up

to second order around a series of nominal trajectories. The first nominal trajectory

is arbitrarily guessed, and the next better trajectory is calculated until a convergence

criteria is met. In addition, we will obtain a sub-optimal locally-feedback control law

around the vicinity of a sub-optimal trajectory. We construct nominal trajectories as

follows:

Definition 3.3.1. Assume that a sequence of open-loop control inputs iik is given,

a nominal trajectory tk is generated by simulating the dynamics without noise using

control inputs uk from a given to that is the mean of an initial state distribution:

2k+1 = f(k, Uk), k = 0, 1,.., N - 1. (3.60)

The following lemma presents how to linearize the dynamics and approximate the

cost function around a nominal trajectory.

Lemma 3.3.1. If a nominal trajectory xk is obtained, and function £k(Xk, Uk) is

separable for variables Xk and uk, which means =21 = 0, the system dynamics and

cost function can be approximated as:

5Xk = Xk - Xk, (3.61)

cUk = Uk - ilk, (3.62)

SXk+l = AkSXk + Bk6Uk + CkWk, (3.63)



Ak = + f A, (3.64)Ai =I+ •k

Bk = a, (3.65)

Ck = A, (3.66)

h(XN) = 6,XQU6X + q'6x + N = h(6xN), (3.67)

QN dh = (3.68)
2dx2 

XN

dh
q dh= i  (3.69)

puN =h( N), (3.70)

Ck(Xk, uk) = 5x•Qk xk + qk 6xk + 5 kTk6uk + tk6uk +Pk k Gk 6Uk), (3.71)

Q 2 XNk = (3.72)
212 2XN,2 k

4q i  (3.73)
qk XNUk

a2 k
Tk I (3.74)

tk = (3.75)
Nu XN,uk

Pk = (k, Uk). (3.76)

Proof. It is straightforward to check that the above approximation results from ex-

panding the Taylor's series up to second order around the nominal trajectory 2k and

nominal control inputs u-k. ]

Variables 6 Xk and 6 Uk represent the deviation from nominal states tk and nominal

control inputs ik of actual random variables Xk and uk. In addition, we rewrite func-

tions h and 4k as functions of zXk and 6 Uk. Within a tube along a nominal trajectory,

we solve a local optimization problem using Theorem 3.1.2 under an assumption of

certainty equivalence (CE). Hereafter, we first show how to design a controller without

any state or control constraints in Theorem 3.3.1, then we handle state and control

constraints in Theorem 3.3.2.

Definition 3.3.2. (Certainty equivalence principle [3]) If an optimal policy is unaf-



fected when disturbances are replaced by their means, we say that certainty equivalence

holds.

Definition 3.3.3. (Certainty equivalent controller [3]) The certainty equivalent con-

troller (CEC) is a sub-optimal control scheme that is inspired by linear quadratic

control Theorem. It applies at each stage the control that would be optimal if the

uncertain quantities were fixed at some typical values. That is, the controller assumes

that the CE principle holds.

Theorem 3.3.1. Given an unconstrained optimization problem described in Eq.

2.12 to Eq. 2.19 (X = Rnx,/U = Rnu), a sub-optimal CE-type control law around a

nominal trajectory is generated using the following backward recursive equations:

Uk = Ak(Ik) = ik + lk + Lk( k - k), (3.77)

where

Hk = Tk + B'Sk+1Bk, (3.78)

gk = (tk + Sk+l'Bk)', (3.79)

Gk = 2(A'Sk+Bk), (3.80)
1

Ik= -Hkgk, (3.81)
1

Lk = - HkGk, (3.82)

Pk = L'HkLk + Gk'Lk, (3.83)

Sk = Qk + A'Sk+1Ak + Pk, (3.84)

Sk = (qk' + Sk+l'Ak + l' Gk + 21kHkLk + gk'Lk)', (3.85)

rk = rk+1 Pk + tr(CkSk+÷1k ) + 'Hklk + gk'lk - tr(PkAk), (3.86)

SN = QN, SN = qN, rN = PN, (3.87)

&k = E[xkl k], (3.88)

Ak = Var[xklIk. (3.89)



In the above equations, lk is the refined open-loop component, and Lk is the feedback

gain matrix for the time index k. Furthermore, the weight matrix Sk represents the

effort, which the controller should spend to reach the destination, due to the deviation

from tk in the subproblem formed from the time index k to the final time index N.

In addition, the term rk represents the effort that the controller should spend if there

is no deviation at the time index k. This effort also takes into account of future

disturbances encoded in Ak to AN.

Proof. First, we will prove by backward induction that Jk(Ik) as defined in Theorem

3.1.2 has the approximated reduced form:

Jk(Ik) = Exk [rk + Sk6Xk + 6XkSk6 kIIk]. (3.90)

Indeed, we have for k = N:

JN(IN) = EXN [PN + q' 6xN + 6x2'QN6xNIIN] , (3.91)

SN = QN, SN = qN, rN = PN. (3.92)

By Theorem 3.1.2, we have the unconstrained minimization:

J(Ik) = minE [£k (k, Uk) + Jk+(Ik+l) )Ik Uk] (3.93)

Assume:

Jk+1(Ik+1) = EXk+1 [rk+l + Sk+lSXk+l k+ 5Xk+lSk+16k+1 I4k+1]. (3.94)

Then:

Jk(Ik) = minE [£k (k, Uk) + rk+1 + S ++xk++1 + Sk+lSk+16xk+1Ik, Uk] (3.95)

= minE [ek(Xk, Uk) + E [rk+ + S'k+l1k+l + 16 x'+lSk+lX1k+l , Uk] klIk Uk]

(3.96)



Expanding all sub terms with 6 Xk+1 = Ak 6xk + BkSUk + Ckwk:

k(Xk, Uk) = Pk + q 6xk + 6Qk6Xk + tk 6Uk + 6UTk6Uk,

E [xk+lSk+16ik+l1xk,Uk]= 6xkAkSk+1AkS6 xk + 6uB lSk+1Bkuk +tr(C Sk1Ck+1k)

+ 6x'A'(Sk+1 + Sk+i')Bk6 k,

E [sk+1'6xk+ll k, k] = Sk+1'Ak6Xk + Sk+l±Bk 6Uk.

Grouping all these terms in the form of:

Jk(Ik) = minE
Uk

6xkS; 6xk + S1 6 Xk + r + 6zuHk6uk 9k + Gk6xk)'6Uk +k, Uk

where

S = Qk + Ak'Sk+lAk,

s k = (q' + Sk+lAk)',

r = rk+1 + Pk + tr(CkSk+1lCkQW ),

Hk = Tk + BkSk+lBk,

gk = (tk + Sk+l'lBk)',

Gk = (A'(Sk+l + Sk+1')Bk)'.

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

Thus,

Jk(Ik) = E [6x S6z• + S- 6Xk + rk Ik+ min E [6ukHk6uk +
Uk

(gk +Gk6Xk)6Uk Ik, Uk] -

(3.103)

Looking at related terms of Uk:

E [6u'Hk6k + 9k +Gk6k)•6uk k, Uk] = 'Hk 6•k + (9k + Gk6~k~)'6k,

where 6Xk = E[xklIk] -I k = ]k -]k. Minimizing over 6Uk without constraints, we



have:

(Hk + H)JUk 9k + GkJk = 0 (3.104)

bUk = -(Hk + HL)- 1 (gk + Gk6~k) (3.105)

JUk = 1k + Lk&ik, (3.106)

where

lk = -(Hk + Hk)- gk, (3.107)

Lk = -(Hk + Hk)- 1 Gk. (3.108)

Hence:

u Hk kHk kHkLkk = 1lHklk + R14L'HkLk&Ik + 11 (Hk + Hk)LkxkgkH6u k =k k ^,k k ,

gkcUk = gkllk + gk'Lk0-k

6x'kGk'6Uk = •kGk3 Xk + 6x'Gk'Lk56k.

Substitute back into Eq. 3.103, we have Jk(Ik) = Exk rk + S'kSXk + Sk 6 Xk •lk]
where:

Pk = L'HkLk + Gk'Lk,

Sk = S7 + Pk = Qk + A'Sk+1Ak + Pk,

Sk = S +'G Ik)' + (l' (Hk + H)Lk + gk'Lk)'

= (q' + Sk+1'Ak + 1Gk + k(Hk + Hi)Lk + g'Lk)•,
rk = r- + Hklk + gk'lk - tr(PkAk),

= rk+1 + Pk + tr(C(Sk+1CkQk ) + lHklk + gk'lk - tr(PkAk).

In the above mathematical manipulation, we use the following properties:

* tr(AAk) = tr(AVar[xklIk]) = tr(AVar[6xk lk]) = E[x'A6XklIk] - 5'kA5-k,

59



* Assuming that Hk is invertible; in fact, with the objective functions of our

models in Chapter 2, Hk is symmetric positive definite,

* In Eq. 3.103, we ignore the term rk, which involves future conditional co-

variances in the term rk+l. Under the CE assumption, we assume that future

disturbances do not affect the choice of a control input at the current time. Due

to this reason, a designed control law is CE-type locally-feedback.

Thus, we have proved Eq. 3.90. Furthermore, during this proof, from the Eq. 3.106,

6Uk = 1k + Lk6&k, it infers that Uk = uk + Ik + Lk( k - Xk). This is a function

of information state Ik since Xk depends on Ik. Note that, we can show that Hk,

S. matrices are symmetric in the next lemma, and thus, what we need to prove

follows. O

Lemma 3.3.2. With the objective functions given in Section 2.7 and Section 2.8, Hk

and Sk are symmetric positive definite matrices.

Proof. With objective function in Section 2.7 and Section 2.8, the weight matrices

Q(T), R(t). Therefore, we can check that Qk, Tk are symmetric positive definite

matrices in Lemma 3.3.1. For k = N, SN = QN is a symmetric positive definite

matrix.

Assume that Sk+1 is a symmetric positive definite matrix, we will show that Hk

and Sk are positive definite matrices. Indeed, from Eq. 3.78, Hk = Tk + B'Sk+lBk is

a positive definite matrix as it is a sum of two positive definite matrices. From Eq.

3.108 and Eq. 3.84, we have Sk = A Sk+1Ak + LkHkLk - IG'HkGk, which is again

a symmetric positive definite. O

The advantage of the unconstrained problem is that there is a closed form solution

for a sub-optimal control law. With state and control constraints, a similar closed

form is not available unless we use another form of approximation [7]. However, the

next theorem proposes a heuristic approach to handle state and control constraints

to keep the closed-form solution.



Theorem 3.3.2. Given the constrained optimization problem in Eq. 2.12 to Eq.

2.19, there are heuristic modifications of Ik, Lk, Sk in Theorem 3.3.1 to obtain a sub-

optimal control law having the following form Uk = lk(Ik) = Uk + lk + Lk( k -- k).

Proof. Recall that from Theorem 3.1.2, we have:

Jk(Ik) = min E [k(Xk, Uk) + Jk+ (Ik+)1 Ik, Uk] . (3.109)
uk Uk(Ik)

We assume that from the mean value xk of the EKF estimate, there is a simple or at

least heuristic way to determine the feasible set Uk (Ik) so that Xk+1 will not violate

the feasible state set X.

During the backward DP pass in Theorem 3.3.1, after calculating lk, Lk as shown

in Eq. 3.107 and Eq. 3.108, we have to modify these quantities due to constrained

minimization over Uk(Ik). Recall that Ik represents the refined open-loop component

for the current nominal control inputs, and Lk represents the feedback gain matrix

for any deviation from a nominal trajectory. When there is no deviation, that is

xk - xk = 0, uk + lk must belong to Uk (Ik). If it happens otherwise, we can make the

following changes:

* Changing lk such that ik + lk in Uk(Ik),

* Replacing those rows of Lk with zero rows which correspond to components of

uk + lk on the boundary of Uk(Ik),

* Replace Sk with (Sk + S') as Sk has to be symmetric positive definite for the

procedure to work in the next iteration.

Unlike the linear quadratic Gaussian (LQG) [3], due to the nonlinearity of system

dynamics, given a control policy, the future conditional covariances are not constant.

Thus, the numerical value of Jk(Ik) in Eq. 3.90 cannot be computed directly using

this recursive formula. Therefore, the iteration stops when a nominal open-loop

control sequence converges. After obtaining a new open-loop control sequence Ueew•k



Nh

Figure 3-2: iLQG iteration.

by Theorems 3.3.1-3.3.2 and the EKF, a new candidate for the next nominal open-

loop control sequence can be computed by il ew = pu'ew + (1 - p)Uk, where p is a

real number within [0, 1]. Thus, the next iteration applies Theorem 3.3.1 again with

the new nominal trajectory generated by u~e". Figure 3-2 illustrates this procedure

graphically. As we can see, the green star and the red star represent a starting location

and a destination respectively. The dashed lines are nominal trajectories generated by

nominal open-loop control inputs in first few iterations. The bold solid line represents

a converged trajectory generated by converged open-loop control inputs. We note that

the shape of a converged trajectory depends on the definition of an objective function

and its weight matrices.

Algorithm 1 shows how the iLQG algorithm works. The algorithm takes the

dynamics f, g, the formulas of h, 1k, a planned horizon N, and an initial distribution

N(zx, Ao) as input parameters, and it returns u, 1, L to establish a locally-feedback

control policy. As we can see, one loop in the iLQG algorithm has three main steps:

linearizing system dynamics and approximating cost function (Lemma 3.3.1), solving

a local linear quadratic Gaussian problem (Theorem 3.3.1 and Theorem 3.3.2), and

updating a new nominal control policy.



3.4 POBRM: offline phase

In this section, we start focusing on the context of planning and controlling a robot.

In particular, we study how to use a feature-based map to build a belief graph with

associated transfer functions in the offline phase. That is, we construct a belief graph

by probabilistically sampling points around the features that potentially provide the

robot with valuable information. Each edge of the belief graph stores two transfer

functions to predict the cost and the conditional covariance matrix of a final state

estimate if the robot follows this edge. The constructed information in the offline

phase is used for multiple queries efficiently in the online phase.

Algorithm 1 iLQG algorithm

1: procedure ILQG(f, g, h, £, N, xo, Ao)
2: Receive an initial measurement yo
3: Perform the EKF update to get N(xo, A0) (Theorem 3.2.1)
4: Initialize i - 0, I1 - 0, L - 0
5: while !converged do
6: Compute 2 (Eq. 3.60)
7: Compute Ak, Bk, Ck, QNN, q N, Q, Q k, Tk, tk,pk (Eq. 3.61 - 3.74 )
8: SN - QN, N +- q, rN +-- pN
9: for k N - 1, ... , 0 do

10: Compute Uk(Ik) based on Xk
11: Compute Hk, 1k, Lk, Pk, gk, Gk, Sk, Sk, rk (Eq. 3.81 - 3.89)
12: if ffk + Ik Uk(Ik) then
13: Fix Ik
14: Replace corresponding rows of Lk with zero rows
15: Sk +-- (Sk + S)
16: end if
17: end for
18: for k + 0, ... , N- 1 do
19: Simulate a new control law ?new 4 k k + Lk _k - k)
20: end for
21: Update i +- pune" + (1 - p)f
22: end while
23: return f, 1, L
24: end procedure



3.4.1 Building a belief graph

Definition 3.4.1. (Visibility graph) Let C denote the space of all robot poses, Cfree

denote the set of all collision-free poses, and Cobst denote the space of all robot poses

resulting in collision with obstacles. We have C = Cfree U Cobst. The approximation

visibility graph of Cfree can be constructed by sampling poses in Cfree as vertices and

connecting straight lines between vertices lying entirely in Cfree as edges.

In fully observable problems, the Probabilistic Roadmap algorithm [10] computes

a trajectory between two locations by searching induced visibility graphs. As we

are interested in partially observable problems, induced visibility graphs cannot be

constructed since poses of a robot are not directly accessible. Nevertheless, a similar

approach, called the belief graph, is presented in [22], [8] for partially observable cases.

Since a robot does not know its state directly, it only has access to EKF state

estimates bk = N(,k, Ak). One the one hand, if the norm of a covariance matrix Ak is

large, a robot is not confident about its actual pose. On the other hand, if the norm

of a covariance matrix Ak is small, a robot has a high confidence in its pose estimate.

A naive approach as suggested by the visibility graph concept is to sample directly

in the belief space in the form bk = N(-k, Ak). However, the probability to sample

all reachable beliefs, including means and covariances, are almost zero as the belief

space is exponentially large. Instead, an induced belief graph can be constructed as

follows. Reachable means x4 of beliefs bk = N(4x, A') can be sampled as done in

visibility graphs to be vertices in a belief graph. Edges are straight lines in the free

space Cfree, connecting pairs of vertices. The reachable covariance As at a vertex

depends on the covariance AM of a departing vertex along a connecting edge bjbk. The

reachable covariances along a path can be propagated using the EKF from a starting

vertex (Figure 3-4).

Definition 3.4.2. (Belief graph) Let C denote the space of all robot poses, Cfree denote

the set of all collision-free poses, and Cobst denote the space of all robot poses resulting

in collision with obstacles. We have C = Cfree U Cobst. The approximation belief graph

of Cfree can be constructed by sampling mean poses in Cfree as vertices and connecting



Algorithm 2 Constructing a belief graph algorithm

1: procedure BUILDGRAPH(map)
2: g.V -0
3: g.E 0
4: for all feature m do
5: for i +- 1, 2, ..., numberof samples do
6: Sample xS E Cfree
7: Add b = (xs, A = 0) to set G.V
8: end for
9: end for

10: for all vertex bi do
11: for all vertex bj(i # j) do
12: if yXXj E Cfree then
13: Add edge bibj to set 9.E
14: end if
15: end for
16: end for
17: return g
18: end procedure

straight lines between vertices lying entirely in Cfree as edges. For each vertex in a

belief graph, the reaching covariance is computed online for each control sequence to

reach that vertex.

There are different strategies to sample vertices of a belief graph. As a simple

approach, the mean components of beliefs can be sampled randomly throughout the

free configuration space Cfree like in the PRM algorithm. However, in a feature-based

map, the area around features will provide rich information for a robot. Therefore,

sampling vertices randomly around features allows for good planning with less ver-

tices. In this research, this strategy is used. Alternatively, as presented in [8], a more

complicated sampling strategy based on the information Theorem around features

can be used.

Figure 3-3 depicts a strategy to sample means of beliefs in a feature-based map.

The red dots are recognizable features, and the yellow dots are sampled means nearby

features. Connecting these vertices by straight lines in the free space Cfree, we have

a belief graph in Figure 3-4. As we can see, each vertex has two components x4 and

As. Moreover, each edge is associated with two transfer function ( and J, which will



Figure 3-3: Sampling a feature-based map.

be constructed later.

Algorithm 2 summarizes the procedure to construct a belief graph from a feature-

based map. The algorithm takes a feature-based map, which consists of a list of

feature coordinates, as an input parameter. A graph G consisting of a set of vertices

and a set of edges is returned.

3.4.2 Computing a locally-feedback control law for an edge

With a constructed belief graph G, the offline phase of the POBRM algorithm starts

building a database for the graph. First, a horizon N to traverse each edge is deter-

mined heuristically by computing a number of time steps to traverse the edge's length

with a nominal velocity vo. Second, a locally-feedback control law to traverse an edge

of the belief graph can be computed by solving the following subproblem using the

iLQG algorithm.



Figure 3-4: Belief graph.

Definition 3.4.3. (CE locally-feedback control law to traverse an edge) Let bi =
N(xý,A ) and by = N(xs,Aj) be two beliefs, which are vertices in a belief graph. A
locally-feedback control law of CE type iri• to traverse along the edge connecting x8
and x' is defined in the following optimization problem:

N -= NJ= distance(xz, x)N = NZ1 = (3.110)vo
h(XN) = (XN - x)'QN(xN - x), QN >- 0, (3.111)

£k (k, Uk) = uRkuk, Rk >- 0, (3.112)

minE h(xN) + k(Xk, k) Io (3.113)
k=0

subject to:

Xk+1 = k +f(k, uk)A+WkV /, k = 0, 1,..., N - 1 (3.114)
k = g(k) + k, k = 0, 1, ...,N (3.115)

Ik = [Yo, Yl, -, Yk, UO, l, ... ,k-1] , (3.116)



Uk = Ik(Ik), (3.117)

x = {1o0, 01, , ., N-1}, (3.118)

Xk EX C R~ n , Uk E U C Rn", yk e I, R Wk E ]R , fWk E Rn, (3.119)

Wk - N(0, Sw), 19k - N(0, Qh ), xo - N(x',A'), Io = Yo. (3.120)

This subproblem is solved by using the iLQG algorithm in Theorem 3.3.1.

3.4.3 Constructing covariance transfer functions

Then, under the mild assumption of environments, the final conditional covariance

Aý can be predicted from a transfer function having a starting covariance Aý as an

input parameter.

Assumption 3.4.1. (Mild environment) We assume that disturbances in an oper-

ating environment are unbiased and not too adverse to distort the motion of a robot

severely. Thus, under the same sequence of control inputs, a robot will receive similar

amount of information from received measurements, which is known as a priori.

Recall that the covariance AM can be found by the EKF dynamics for every new

query with different Af. However, the simulation of the EKF dynamics involves an

inverse operation for every incoming measurement. Thus, this is computationally

intense for high-dimensional systems, and therefore it is desirable to have a more

efficient approach to estimate Aj for all new queries. This demand is illustrated in

Figure 3-5. Theorem 3.4.1 proposes a solution to this demand.

Theorem 3.4.1. (Covariance transfer function) Given a control law 7ri j to traverse

an edge bibj, there is a linear operator ('j such that the conditional covariance of a

belief bj can be predicted as

= (3.121)

Asj = ['&,1]1[ 2,11 (3.122)
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Figure 3-5: New query of the final covariance.

Proof. Using the control law 7ri to simulate a trajectory once, the controller provides

a control consequence {u 0 , ., UN-1 }, and a robot receives a measurement sequence

{Yl,Y2, ... ,YN-1, YN}. From Theorem 3.2.2, let As = A -1, we can construct matrices

11, ý2, 2- .. , NN such that:

[] = [ ] [N] [
L N J AL J

(3.123)

So:

(3.124)

(3.125)

Under mild environments, we expect that generated control inputs and received mea-

surements would not be significantly different in several queries. Thus, the matrix

D iffe rent I niti
Conditio ns

ij = [ý] [ýN] ... [ ] [ ] ,
As = [F1,1] ['2,1- 1

m

bb

· · ·



(i , which is defined as a covariance transfer function, is computed once using simu-

lation of the control law 7rij and associated with the edge bibj. Given the matrix ( ,
this theorem implies that a conditional covariance of an estimate after executing a
series of control inputs and receiving a series of measurements can be computed by
linear operations and only one matrix inversion operation from an initial conditional

covariance. This significantly improves the computational speed of the EKF. There-

fore, we can use this transfer function to efficiently predict a covariance at vertex by
given a covariance at vertex bi in future queries. Figure 3-6 illustrates graphically the
proof. O

On.tpUpddta
... , (N__+ 9=CH 4 )

Figure 3-6: Mechanism of covariance transfer functions.

3.4.4 Constructing cost transfer functions

Finally, the cost to traverse an edge bibj using a control law rij varies with respect to
a departing covariance Aý. Similar to covariance transfer functions, we need a method
to estimate the cost-to-go efficiently for multiple queries. Using an approximated cost
structure, we can parameterize this objective value as a function of Aý so that future

queries can estimate quickly the corresponding objective values.

From the proof of Theorem 3.3.1, Eq. 3.90 suggests that the objective function
value can be approximated as

Jo(Io) = E [o r + s'o6xo + 6xoSo6xoIIo]  (3.126)

To + (po)'6ijo + 6.oýSo0 o + tr(BPA8) (3.127)

= Fo + tr(PA ). (3.128)

I



The first approximation is due to E o [6x'oSo6xollo] = 6b'oSo0 xo + tr(SoAf), and from

Eq. 3.86, ro contains terms relating to future covariances Aks. Therefore, we ap-

proximate the contribution of future covariances as an uncertainty weight matrix P,

and approximate ro as Fo. The last equality is due to &0o = xo - xý = xý - x = 0,

which states that the mean of an initial robot's pose is a sampled pose at a vertex bi.

Although the exact value of To and P cannot be computed, we will show in Theorem

3.4.2 to learn these values using stochastic iterative algorithms [4].

Normally, a sub-optimal objective value to traverse an edge resulted from an opti-

mization problem with an objective function including a terminating cost component

is approximated. However, we are also interested in objective functions without a

terminating cost component when incoming vertices are just transiting waypoints in

a long trajectory. Thus, we differentiate two types of cost transfer functions and

provide a mechanism to iteratively find the approximation structure.

Definition 3.4.4. The type one (type-1) cost transfer function of an edge approxi-

mates the cost-to-go of a control law without the final terminating cost:

J(lo) = E fk (k, Uk) 1 . (3.129)

The type two (type-2) cost transfer function of an edge approximate the cost-to-go

of a control law with the final terminating cost:

N-1

J(Io) = E h(XN) + e k(Xk,Uk) o . (3.130)
k=O

Theorem 3.4.2. (Cost transfer function) The approximated cost function PJ having

the form Fo+tr(PA~) estimates the cost-to-go along the edge bibj with a control law 7rij

Starting with arbitrary values of To and P, the following iterative procedure provides

a numerical solution to the approximated values of To and P:

* Initialize a random initial covariance Af,

* Computing the current approximated value J8 as To + tr(PMA),



* Simulate type-1 or type-2 value JO of J, according to the fixed control 7ri,

* Updating ro and P as

ow = To - '(J0 - Jo), (3.131)

pnew= p - y(J - J0)A8. (3.132)

The value of y approaches to 0 as the number of iterative steps increases.

In the above equations, the term ro approximates the effort to reach the vertex bj when

there is no uncertainty at the vertex bi. In addition, the weight matrix P approximates

the contribution of uncertainty at the vertex bi and future induced uncertainty in the

cost-to-go.

Proof. Given the current values of To and P, finding the next approximated values of

these variables is equivalent to solving the following optimization problem:

min Io + tr(Pa!A) - J (3.133)
oIP 2 \

Denote:

12
L(To, P) = 2( o + tr(PA) - Jo) (3.134)

= ( (o + E [(xo - o)'P5 (mo o) loJ - J)J (3.135)
2

Using the gradient method, the next numerical solution is:

onew = ro - 7TVFoL(To, P) (3.136)

= ro - 7(To + tr(PAs) - JO) (3.137)

= To - 7(J1 - Jo), (3.138)

pnew = p - yVpL(-o, P) (3.139)

= P - '((o + tr(PA') - JJ)(E [(xo - Xio)(xo - o)'llo]) (3.140)

= P - 7(JO - Jo)As. (3.141)



In the above equations, y is a step size in the gradient method. To ensure convergence,

it is well known that y should approach 0 when the number of iteration increases [4].

The convergence criteria for this procedure is when changes in norms of To and P are

below some thresholds. ]

Once the value of To and P for an edge are determined by Theorem 3.4.2, we

have established the cost transfer function J with an initial covariance matrix as an

input parameter for that edge. Thus, for any future query to traverse the edge, the

associated cost transfer function can predict rapidly the cost-to-go by plugging an

initial covariance into the cost transfer function.

The offline phase of the POBRM algorithm is summarized in Algorithm 3. The

algorithm requires a feature-based map and returns a graph 9 having vertex set,

edge set and associated transfer functions. Overall, there are two main parts in the

algorithm, namely sampling a belief graph (Algorithm 2), building covariance transfer

functions and cost transfer functions (Theorems 3.4.1 - 3.4.2 ).

Algorithm 3 Offline phase of the POBRM
1: procedure OFFLINEPHASE(map)
2: 9= buildGraph(map) (Algorithm 2)
3: for all edge bibj E 9.E do
4: N +- distance(xz, x )/vo
5: h(yN) = (XN - X-)'QN(XN - Xj)
6: £k (k, Uk) = U'kRkUk
7: 7j = iLQG(f, g, h, f, N, xo, AM) (Algorithm 1)
8: Simulate r'ij to compute bibj.ý r - [ [[N ] ... [s1] [J-] (Theorem 3.4.1)
9: Learn bibj.J (Theorem 3.4.2)

10: end for
11: return 9
12: end procedure

3.5 POBRM: online phase

In this section, we use a belief graph built in the offline phase to perform the Dijkstra's

search to plan a sub-optimal trajectory in terms of waypoints. Then, a locally-



feedback control law to follow the sub-optimal trajectory is obtained by the iLQG

algorithm.

3.5.1 Sub-optimal trajectory

Given a belief graph G with covariance transfer functions and cost transfer functions

associated with its edges, the mission is to plan a trajectory from an initial belief

N(xo, Ao) to a destination with the final state ZG.

First, the initial starting location and the destination are added into the belief

graph. In addition, we construct two additional nearest edges, from the initial location

and to the destination, and their corresponding transfer functions. The edge linking

with the initial location has a cost transfer function of type-1, and the edge linking

with the destination has a cost function of type-2. Moreover, we also construct a

direct edge from the initial location to the destination with a type-2 cost transfer

function.

Second, from the initial belief, covariances at other vertices can be computed

efficiently by propagating Ao using covariance transfer functions. Then, the approx-

imated cost to traverse an edge is computed by plugging a covariance at a departing

vertex into the associated cost transfer function of that edge. We consider these cost

values as edge weights, and therefore the Dijkstra's search can be applied to find a

trajectory with the smallest cost-to-go. Normally, a large covariance at a departing

vertex results in a large edge weight. Therefore, this Dijkstra's search provides us

with a trade-off between keeping the covariance of a robot state estimate small and

keeping the energy to find a destination small. In other words, a balance between

exploration and exploitation is achieved in the online phase of the POBRM algorithm.

3.5.2 Sub-optimal controller

Suppose that the Dijkstra's search provides a trajectory a with ordered waypoints

{bal , ba2, ..., ba, }, and the corresponding horizons to reach these vertices from its

preceding vertices are {Nl,I Na2, ... , Nm,, Nam+,}. In particular, there are N., time



steps to traverse from the initial location to a vertex b,,, and there are Nm+,, time

steps to traverse from a vertex b,, to the final destination. Let N be a total number

of time steps to follow the trajectory, and kj is the time index to visit a vertex b,.,

We have:

N = N, + N2 ... + N, + Nm+1, (3.142)

k = N, + Nc 2+ ... + Nj. (3.143)

The corresponding objective function to go from the initial location to a destination

location via these waypoints in an induce optimization problem are defined as

h(XN) = (XN - XG)'QN(XN - XG), QN >- 0, (3.144)

k(Xk, k)= ulkUk, Rk 0, k -0 {ki, k2, ..., km}, (3.145)

ekj(xk, uk3j) = u' Rkj ukj + (Xkj - xs .j )'Qk j(xk - x.), Rk >'- O, Qk >- 0, (3.146)

minE h(XN) + k(Xk, Uk) Io (3.147)
k=0

subject to:

Xk+1 = Xk + f(Xk, k)A + WkA, k = 0, 1,..., N - 1 (3.148)

Yk = g(Xk) + 7k, k = 0, 1, ..., N (3.149)

Ik = [Yo, Y, ..--, Yk, UO, U 1, ... , Uk-1] , (3.150)

Uk = /'k(Ik), (3.151)

r = {, Al, --..., IN-1}, (3.152)

Xk E X C R n Uk E U C Rn' , Yk E Rn, Wk E Rn ,%9 k E R n~, (3.153)

wk - N(O, Q•2), tk - N(0, 2")), xo , N(xo ), Ao), 10 = Yo. (3.154)

Again, the above optimization can be solved sup-optimally by the iLQG algorithm

to obtain a locally-feedback control law xr.

Figure 3-7 shows the operations of the online phase. In particular, two new vertices



Figure 3-7: Illustration of the online phase.

are the starting green star and the final red star. Three additional edges are depicted

in red lines. After the Dijkstra's search, the found waypoints are in black dots.

Finally, the iLQG refines a sub-optimal trajectory in the green curve and returns a

locally-feedback control law 7r as well.

The overall summary of the POBRM online phase is presented in Algorithm 4.

Input parameters are a belief graph 9, an initial belief N(xo, Ao), and a destination

state XG. The online phase returns a sub-optimal trajectory x and control law 7r.

3.6 Sources of error

First, since we actually solve the discrete-time formulation, the obtained solution

approximates to the solution of the continuous counterpart. If the time step A is

small, the error between these two solutions may be negligible. It is likely that when

the time step A approaches 0, a discrete-time solution approaches a continuous-time

solution. However, this phenomena does not always hold since the discretization may

also lead to the problem of inconsistency.

Second, when constructing a belief graph, the more vertices are in the graph, the



Algorithm 4 Online phase of the POBRM

1: procedure ONLINEPHASE(g, N(xo, A ),zc)
2: Receive an initial measurement yo
3: Perform the EKF update to get N(xo, Ao) (
4: gz +- size(9.V)
5: Add vertices bgz+1 = (o, A0o), bgz+2 = (XG,
6: Add nearest type-1 edge bgz+lbj, to g.E
7: Add nearest type-2 edge bj2bgz+ 2 to 9.E
8: Add direct type-2 edge bgz+lbgz+2 to 0.E

9: for all b G 9.V do
10: cost[b] -
11: prev[b] < -1;
12: end for
13: cost[bgz+l] 0
14: Queue +- g.V
15: while !empty(Queue) do
16: b +- popMin(Queue)
17: if b! = bgz+ 2 then
18: break
19: end if
20: for all neighbor v of b do

21: [ ] <- [b . ] b. Al

22: A +-- ['1,1] ['F2,1 - 1

23: alt +- cost[b] + bv.J(A)
24: if alt < cost[v] then
25: cost[v] +- alt
26: v.A +- A

27: prev[v] +- b
28: end if
29: end for
30: end while
31: Compute waypoints wp +- traceBack(prev)
32:

33:

34:

35:

36:

37:

38:

39:

40:

41:
42:

(Theorem 3.2.1)

G = 0) to g.v

> Assume wp = {b0 , ... , bam
N + Nc +... + Na+ 1
for j - 1,..., m do

kj NaI + ... + Na j
end for
h(XN) = (XN - XG)'QN(XN - XG)
£k(Xk, Uk) = u'RkUk, k V {k1, k2, ..., km}
£k, (Xkj, Ukj) 4u' Rk, Uk3 + (Xkj - X'9 )'Qk, (Xk, - x~.)
7 = iLQG(f, g, h, £, N, x0o, Ao)
Simulate the control law 7 to get a trajectory x
return x, 7r

end procedure



better the solution is. Ideally, if sampled vertices are identical to the best trajectory,

a returned solution will be identical to a globally optimal solution. However, it is

impossible to sample the best trajectory, and sampled vertices scatter randomly in

the free space of a map. Therefore, sampling vertices of a belief graph is a second

source of error.

Third, the iLQG algorithm, which is used to find a sub-optimal controller along

each edge, produces error when it stops the loop to look for a nominal trajectory.

First, the algorithm stops the loop when some tolerance is met, so a converged nominal

trajectory bears numerical error. Second, a nominal trajectory does not purposely

provide information to increase the confidence of the robot state, while the best

trajectory may detour via some features. This is, ofcourse, the original problem that

we wish to solve.

Fourth, under a control law r'3 for traversing an edge, the corresponding covari-

ance and cost transfer functions are other sources of error. We assumed that the

environment is not so pathological to provide substantially different trajectories and

observations occur in different runs of the same control law rij. However, these trans-

fer functions will provide inaccurate predictions of resulting covariances and cost-to-go

values if the noise in the environment is too dominant.

Fifth, in the final run of the iLQG to find a control law going through waypoints to

reach a destination, the objective consists of additional terms to enforce a robot going

through the waypoints. Thus, the cost-to-go value in the final iLQG problem will be

different from the value of the original problem that is suggested in the Dijkstra's

search. This discrepancy will also result in error between an obtained trajectory and

a globally optimal trajectory.

3.7 Analysis of the POBRM algorithm

Let us assume that the first four types of error are negligible, we will address the

remaining error to show that it is possible to bound the sub-optimal cost-to-go com-

pared to the globally optimal cost-to-go. That is, we first assume that discretization



scheme is consistent, a belief graph is sampled well enough, and all transfer functions

predict covariance and cost-to-go for an edge accurately. Therefore, the Dijkstra's

search is able to pick up waypoints {bJ, b12, ..., bAm} along a globally optimal trajec-

tory a.

Recall that the original discrete-time optimization problem is

N-1

J* = min E h(xN) + E k (Xk, uk) lo (3.155)
k=O

subject to:

Xk+l1 k + f(Xk, Uk)A + Wkv , k = 0, 1, ..., N - 1 (3.156)

yk = g(k, Uk) + ik, k = 0, 1, ..., N (3.157)

Ik= [Y, Y1;, ,k, Y , U1, -.., Uk-1], (3.158)

Uk = Ilk(k), (3.159)

Jr = { lo, 1, ., ) N-1}, (3.160)

Xk G X C Rn,Uk E U C nR7u,yk E ]nR, Wk e Rnw,7 k RE In, (3.161)

wk - N(0, Qw), Ok N N(0, Q"), xo - N(xo , Ao), Io = Yo. (3.162)

Since, we assume that waypoints {ba1, bL2, ..., b,,} are along the best trajectory, the

above problem is equivalent to the following optimization problem:

J* = min E h(xN) + k(k, Uk) IO (3.163)
k=0

subject to:

Xk+1 = Xk + f(Xk, Uk)A + WkV , k = 0, 1,..., N -1 (3.164)

E [(xk- X, )'Qk(Xk -- ) I0 o] k, j = 1,2,...,m (3.165)

Yk = g(Xk, Uk) +' k, k = 0, 1, ..., N (3.166)

Ik = [yY ,..., Yk U, U ...---, k-7], (3.167)



Uk = Lk(Ik), (3.168)

7I = Po o, Ai, ... iN-1}, (3.169)

Xk E X C_ Rnf,Uk E U C n , uyk e ]R ', wk E n",,R Ok E R7", (3.170)

Wk - N(0, Qw), dk N N(0, 2Q), x0o N(xo, Ao), Io = Yo. (3.171)

Eq. 3.165, with symmetric matrices Qi, >- 0, represents m waypoints along a glob-

ally optimal trajectory. Assume that h(XN) = (Ny - XG)'QN(XN - ZG), we denote

hkj (xk) = (Xkj - Xa)'Qk (SXk - Xkj ), and Eq. 3.165 can be rewritten as

E[hk(Xkj)o]c Ek., j = 1,2,...,m. (3.172)

The term E~k represents the distance to the sampled mean of the jth waypoint when

the robot passes by. If Ek= = 0, the robot is required to pass by exactly the sampled

mean x3 along the planned trajectory a. These margin regions allow the robot to

perform a smooth trajectory around the planned trajectory a. Dualizing this set of

constraints yields the following dual problem:

J(A) = minE h(XN) + ek (Xk, Uk) + Z Aj(hkj(Xk) -- Ek) E Io (3.173)
k=0 j=1

subject to:

X Xk1 fXk k, Uk)A+ Wk , k = 0, 1,...,N - 1 (3.174)

yk =g(k, Uk)+ k, k = 0, 1, ..., N (3.175)

Ik = [oYi, Y1 *, Y, Uk, U1, ... , Uk-1 , (3.176)

Uk = Ik(Ik), (3.177)

7" = -{0o, /I1, .. , 7PN-1}, (3.178)

Xk E X C Rn,uk E U C Ryk E Rn, Wk E Rn, Ok E R n', (3.179)

Wk - N(o, Qw), 19k , N(0, 1), xo - N(xo, Ao), Io = Yo. (3.180)



The vector A = [A1, A2, ..., Am]' represents m dual variables corresponding to m dual-
m

ized constraints. We note that for a given A, the term E Ajek, is a constant. Thus, in
j=1

the final run of iLQG algorithm, a returned control law achieves the objective value

J(e), where A = e = [1, 1, ..., 1]'. From the weak duality Theorem, the lower-bound

of the optimal value of the original problem is given by:

3(e) • max J(A) < J*. (3.181)
A>O

On the other hand, the upper bound of J* can be obtained by any admissible control

law to reach a destination. In particular, a suggested value from the Dijkstra's search

to traverse edges in a sub-optimal trajectory can be used as an upper bound. Thus,

we have:

J(e) < J* < JDijkstra. (3.182)

Eq. 3.182 provides us with the bounds of the globally optimal value of the origi-

nal problem, in which the bound limits are found by the combination of the iLQG

algorithm and the construction and search of a belief graph. Therefore, in princi-

ple, if error from every step in the entire POBRM algorithm as discussed in Section

3.6 are bounded, we will able to devise the POBRM algorithm to verify this bound

experimentally.
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Chapter 4

Experiments And Results

In this chapter, we present several experiments and results to verify the performance

of the POBRM algorithm. In particular, the experiments were tested on simula-

tion of the modeled 2D plannar car and the 3D helicopter in Chapter 2. First, we

show sub-optimal trajectories to follow edges generated by the iLQG algorithm. The

performances of covariance transfer functions and cost transfer functions are then

presented. We provide sub-optimal trajectories resulting from planning and control-

ling to navigate from a starting location to a destination. Finally, we show that the

algorithm is scalable from 2D systems to complex 3D systems.

4.1 Performance of the iLQG algorithm

Table 4.1 summarizes the landmarks locations and their visibility radii, system noise

covariance Q6, measurement noise covariance Q', and initial pose covariance Ao .

We assume that there is no state and control constraint for this system. Figure 4-1

shows an example of an iLQG trajectory for the 2D car. In this figure, the iLQG

algorithm produces a sub-optimal trajectory to traverse an edge connecting the green

star and the red star. The features are red dots, and the dashed blue circles around

the features are the visibility areas for the car to observe the corresponding features.

There are three trajectories plotting in this figure: the nominal trajectory in blue, the

true trajectory in red, and the estimated trajectory in green. Around the estimated
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Figure 4-1: An example of iLQG trajectory.

trajectory, there are ellipses representing the covariances of these estimates. The

covariances become larger over time if the car is not nearby some visibility area. When

the covariances are large, the location of the car becomes highly uncertain, which will

affect subsequent locations and the final pose in different realizations. However, as

the iLQG algorithm is a CE controller, it does not take into account the minimization

of the covariances along a trajectory. Therefore, this figure suggests that a high level

planner should make use of available features to enhance the confidence of the car.

Figure 4-2 plots the profile of nominal controls i over 11 iterations for the con-
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verged trajectory in Figure 4-1 with p = 0.5. Part 4-2(a) shows the norms of nominal

control sequences, part 4-2(b) shows the ratio of improvement of nominal controls to

their absolute norms over iterations in the stopping criteria, and part 4-2(c) presents

the plot that verifies the rate of convergence. In part 4-2(c), we calculated ratios
0Ijk+1_1l* where W* is the converged nominal control sequence. As all the ratios are

1ftk - * 111.3

in the range (0, 1), it indicates that the rate of convergence is about 1.3 in this case.

We take note that when updating a new nominal control sequence, the first step in

Theorem 3.3.1 is a Newton-like method, which has a quadratic rate of convergence.

Then the new control sequence is interpolated with the old control sequence via the

parameter p to avoid arbitrary diverged simulated control sequences due to noise.

Thus, the rate of convergence is less than 2 as we can expect.

4.2 Performance of transfer functions

4.2.1 Covariance transfer functions

In the second experiment, we compared estimated covariances with fully updated

EKF covariances for final state estimates at incoming vertices. Random covariance

matrices with standard deviations for the X, Y directions up to 1 meter were given

at a departing vertex. Corresponding estimated covariances and fully updated EKF

covariances were recorded. Figure 4-3 depicts the traces of estimated covariances

versus the traces of fully updated covariances. As we can see, different initial de-
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(a) Plot of u. (b) Plot of change of if. (c) Plot of rate of conver-
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Figure 4-2: Profile of nominal controls.
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Figure 4-3: Estimated covariances v.s. fully updated covariances.
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Figure 4-4: Running time to compute final covariances.

parting covariances yield different final covariances, and the trace values of the final

covariances are closely matched by the two methods. Moreover, Figure 4-4 shows

the running time, in the log scale, to compute the final covariances with respect to

standard deviations in X, Y directions using the two methods. The fully updated

86



time of covariance matrices is computed averagely using 60 simulations. The graph

shows that the fully updated time is almost 150 times more than the estimated time

using transfer functions. This observation verifies that variance transfer functions are

able to preserve the accuracy of predicted covariances with less intense computation.

4.2.2 Cost transfer functions
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Figure 4-5: An example of an edge receiving many observations.

Next, we evaluated the performance of cost transfer functions for estimating the

cost-to-go values for edges. Similar to covariance transfer functions, different initial

covariances were given, we recorded both estimated cost values and average simulated

cost values over 600 samples. Figure 4-5 shows an example of an edge along which
the car will receive many observations. Figure 4-6 compares two types of cost values
versus standard deviations for X, Y directions. Similarly, Figure 4-7 presents an edge
without nearby landmarks and the corresponding comparison is shown in Figure 4-
8. As suggested by these plots, we infer that the proposed approximation structure
ro + tr(PA) is able to preserve the shape and trend of objective values with respect
to initial covariances. The accuracy of estimated values by cost transfer functions
depends on noises and the structures of environments.
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Figure 4-6: Estimated
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cost values v.s. simulated cost values for Figure 4-5.
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Figure 4-7: An example of an edge without any observation.

4.3 Planning and control

In the third experiment, we planned a mission to navigate from a starting location to
a destination. There were five features, and a belief graph with ten sampled vertices
was created in the offline phase. The online phase returned a sub-optimal trajectory
and a locally-feedback control law to follow this trajectory. Figures 4-9 and 4-10
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Figure 4-8: Estimated cost values v.s. simulated cost values for Figure 4-7.
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Figure 4-9: No waypoint, cost value 16735.

show the advantages of the POBRM algorithm in planning and controlling the car.
On the first hand, Figure 4-9 plots a trajectory between two locations without going
through any waypoints to reduce covariances. Thus, although the estimated mean of
the final state is at the destination, the actual position of the car is far away from
the destination. On the second hand, the POBRM algorithm provides the planned
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Figure 4-10: Three waypoints, cost value 340.

Table 4.2: Comparing of unplanned and planned trajectory costs.
Standard deviation (m) Unplanned cost Planned cost

v-0. 1 1.74 x 104 370
/-.2 2.03 x 104  394

2.11 x 104 408
O.4 12.22 x 104 434

S2.42 x 104 445

sub-optimal trajectory with three black waypoints in visibility areas in Figure 4-10.

Therefore, the car is able to reach the destination with high accuracy despite the long
curved route.

In Table 4.2, we compare the average simulated cost values of the two trajectories

with varying standard deviations in X,Y direction. As we can see, the planned tra-

jectory cost from the POBRM algorithm is significantly smaller than the unplanned

trajectory cost. Hence, this result infers that more energy to traverse the longer

trajectory benefits the car tremendously. In addition, when the standard deviations

Table 4.3: Running time requirement for the offline and online phases.
Offline time (s) Online time (s)

600.43 1.32
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increase, the simulated cost of the planned trajectory increases slightly, which indi-

cates that the POBRM algorithm is robust against initial state uncertainty.

Table 4.3 summarizes the running time in seconds to build the belief graph in

the offline phase, and the searching in the online phase. As we can see, compared

to the online time, the offline time is almost 455 times slower, which is substantially

dominant in the POBRM algorithm. Thus, most of the burden of computation is

moved to the offline phase.

4.4 Scalability to high-dimensional systems

Finally, we verified that the algorithm is scalable to planning and controlling the
helicopter in 3D environments. In this case, the problem has control constraints on
the thrust components of control inputs. We investigated three important operations
in controlling the helicopter: hovering, landing, and navigating.

4.4.1 Hovering
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Figure 4-11: An example of the hovering task.
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In controlling the helicopter, one of the most common tasks is to hover around a

position after taking off from the ground. Figure 4-11 shows an example of this task.

Similar to the 2D planar car, there are landmarks as red dots, and the dashed spheres

around them are visibility areas. As shown in this figure, the helicopter is able to

take off and then hovers around the red star position for a while.

4.4.2 Landing
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Figure 4-12: An example of the landing task.

The next common task is to land safely on the ground (Z = 0). Figure 4-12

depicts an example of landing trajectories. As we can see, the helicopter approaches

the ground without overshooting negative Z values.

Similar to 2D planar car navigating missions, we used the POBRM algorithm to plan
and navigate the helicopter to a specified destination. We compared the effect of
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trajectory planning and control using the iLQG algorithm alone and using POBRM.

In Figure 4-13, we present an example of an unplanned trajectory, which is returned

from the iLQG algorithm. As we can see, the covariances, which are represented by

the dotted cloud around each estimated mean, are enormous. Thus, the helicopter

is uncertain about reaching the desired destination. In contrast, in Figure 4-14, a

planned sub-optimal trajectory with two waypoints in black, which is returned from

the combination of the Dijkstra's search in the belief graph and the iLQG algorithm,

is used. This trajectory arrives at the destination with high accuracy by taking the

advantage of the necessary nearby features.
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Figure 4-13: A trajectory using the iLQG algorithm only with large covariances.
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Figure 4-14: A trajectory with the iLQG algorithm and the Dijkstra's search.
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Chapter 5

Conclusions

5.1 Summary

In this research, we have addressed the problem of planning and control of mo-

bile robots in partially observable stochastic environments, when state estimates use

feature-based map information. The POBRM algorithm is inspired by the PRM al-

gorithm [10], which is highly successful in planning trajectories for fully observable

robots. We have incorporated the idea of constructing belief graphs in the BRM

algorithm [22] [8]. The key concept is to sample in the mean space and search in

the covariance space of robots' belief states. To plan a trajectory efficiently, each

edge of the belief graph is associated with a covariance transfer function and a cost

transfer function. These functions parameterize the set of different trajectories based

on covariances of initial beliefs. Thus, the POBRM algorithm is able to move sig-

nificant computation to the offline phase, and perform fast planning in the online

phase. Moreover, the POBRM algorithm also provides a sub-optimal control policy

to control robots along a planned trajectory using the iLQG algorithm [15]. The

principle of the iLQG algorithm is based on solving successive linear quadratic Gaus-

sian problems by the dynamic programming. Overall, the POBRM algorithm can be

regarded as a POMDP method to solve the partially observable stochastic shortest

path problem.

From our proposed approaches and results, this work has contributed many as-



pects in the field of robust robotics. We have proposed a novel method to decouple

computation in two separate phases that will facilitate fast real-time planning and

controlling. The algorithm takes into account of balancing exploitation in terms of

minimizing energy and exploration in terms of increasing confidence. Thus, the PO-

BRM algorithm is robust to imperfect state information. Moreover, we have provided

an insight into the relationship among different subproblems from the view of dualiz-

ing complex constraints. This leads to a potential theoretical error bound analysis in

future work. Finally, we have demonstrated that the proposed algorithm is scalable

from 2D planar car systems to 3D helicopter systems to perform coastal navigation

trajectories.

5.2 Future directions

There are several directions to continue this research in the future. First, we have

been working so far on simulation. Thus, the next step would be to verify the POBRM

algorithm on real hardware. We are under the process of building the dynamics for

the quad-helicopter and going to test autonomous indoor flight.

Second, the next challenge is to handle state constraints and control constraints

in the iLQG algorithm more rigorously. The current heuristic approach suffers from

slow convergence if the set of state and control constraints is too complex. Moreover,

the assumption of converting from state constraints to control constraints is not al-

ways feasible due to complex system dynamics. There are some possible directions

to tackle this issue. Based on the idea of embedding complex constraints into the

objective function, the well known dualizing [2] and barrier methods [2] in nonlinear

optimization paradigm are suitable in our circumstance. As an alternative approach,

methods based on algebraic geometry (7] are likely to be useful. Thus, more necessary

investigations need to be carried out to fully handle these complex constraints.

Third, a more systematic way to sample vertices in a belief graph is desirable to

reduce the number of samples and at the same time ensure good information. This

is highly important for navigating within large-scale indoor environments.



Fourth, most of the offline phase of the POBRM algorithm is spent in building

cost transfer functions. More work to accelerate this slow learning process is essential.

Last but not least, a more rigorous error analysis of all steps in the POBRM algo-

rithm is highly essential to ensure the stable performance of the algorithm. Especially,

we have to scrutiny the time discretization step, the iLQG algorithm, the sampling

belief graph step, the construction of transfer functions, the Dijkstra's search step,

and the final iLQG pass. The proven error bounds of all these parts will enable us to

understand the error bound of the original continuous-time problem.
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