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Abstract

The purpose of this thesis is to develop techniques for analyzing the limiting McKean-

Vlasov dynamics of interacting particle systems featuring singularities, and arising in

physics and mathematical finance.

We first investigate the asymptotic stability of unidimensional log gases under non-

convex confining potentials by establishing new Entropy-Wassertein-Information (HWI)

inequalities. Such gases are obtained as the mean-field limit of particles interacting via a

repulsive logarithmic potential.

Then, we establish the well-posedness of the supercooled Stefan problem with oscilla-

tory initial condition. This classical problem from mathematical physics is reformulated

using a probabilistic description of the free boundary as a cumulative distribution function

of the hitting time of a Brownian motion with a jumping drift.

Finally, we study the well-posedness problem of a class of bidimensional stochastic dif-

ferential equations (SDE), whose coefficients depend on the joint density of the unknown

process. This class of local stochastic volatility models is important for the calibration

of volatility surfaces. Additionally, we solve the long-standing problem of joint S&P

500/VIX calibration by using SDEs controlled by neural networks.
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Chapter 1

Introduction

In this dissertation, we are mainly concerned with the analysis of the mean-field limit of

unidimensional particle systems (X i,N
t )t≥0,1≤i≤N , interacting with each other via a typical

dynamic of the form

dX i,N
t = b

(
t,X i,N

t ,
1

N

N∑
j=1

δXj,N
t

)
dt+ σ

(
t,X i,N

t ,
1

N

N∑
j=1

δXj,N
t

)
dBi

t, 1 ≤ i ≤ N, (1.0.1)

where N ≥ 1 is the number of particles, (Bi
t)t≥0,1≤i≤N are i.i.d standard Brownian

motions. The specificity of such systems is the dependence of the drift coefficient b :

R+×R×P(R)→ R and the volatility coefficient σ : R+×R×P(R)→ R+ on the aver-

aged field 1
N

∑N
i=1 δXi,N

t
, which models the interaction with other particles. Here P(R) is

the set of probability measures on R. The initial positions of the particles (X i
0)1≤i≤N are

assumed to be identically distributed and independent of each other and of the Brownian

motions.

The mean-field limit is obtained when N → ∞, and is described by the so-called
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McKean-Vlasov stochastic differential equation (SDE)


dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dBt,

P (Xt ∈ dx) = µt(dx),

Xt=0 = X0,

(1.0.2)

where the unknown is (Xt, µt)t≥0, (Bt)t≥0 is a real standard Brownian motion and X0 is a

real random variable of law X1,1
0 . Such equations, in which the dynamic is non-Markovian

and depends on the law of the underlying process, have various applications in physics,

mathematical finance, economics, biology and neuroscience (see e.g. [88], [87], [66], [17],

[34]). The convergence of the particle system (1.0.1) towards the limiting problem (1.0.2)

is formalized through the notion of propagation of chaos (see e.g. [68] and [106]). When

the propagation of chaos property holds, particles become asymptotically independent

and for fixed k ≥ 1, the law LN , N ≥ k, of the process (X1,N
t , . . . , Xk,N

t )t≥0, converges

towards the independent product L⊗ · · · ⊗L, where L is the law of a solution (Xt)t≥0 to

(1.0.2).

On the mathematical side, the analysis of SDE (1.0.2) is challenging due to the lack

of regularity of the law (µt)t≥0 of a solution and the non-linear aspect of the equation.

Indeed, if we impose that µt, t ≥ 0 has a density p(t, ·) and that b(t, x, µt) and σ(t, x, µt)

depend on µt via p(t, x), then p solves formally the quasi-linear Fokker-Planck equation


∂tp(t, x) = 1

2
∂xx [σ2(t, x, p(t, x))p(t, x)]− ∂x [b(t, x, p(t, x))p(t, x)] , (t, x) ∈ R+ × R,

p(0, x) = P (x), x ∈ R,
(1.0.3)

where P denotes the density of the law of X0. When the coefficients b and σ are Hölder

continuous , the analysis of equation (1.0.3) can be made using the classical results of

Ladyzhenskaya et al. [77] (see e.g. [65]).

When b and σ are more irregular, the lack of general theory forces us to exploit
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the specific structure of the equation at hand. In this work, we specifically address the

problems of well-posedness and asymptotic stability of equations of type (1.0.1), (1.0.2)

and (1.0.3), where the drift or the volatility exhibit singularities, by developing new

techniques. More specifically, we consider the problem of asymptotic stability of log

gases under non-convex external potential, the well-posedness for the supercooled Stefan

problem under oscillatory initial condition and the well-posedness of a local stochastic

volatility model. An additional chapter is dedicated to the more practical problem of

joint SPX and VIX calibration.

1.1 Asymptotic stability of log-gases

The first chapter is dedicated to the study of the asymptotic stability of the mean-field

limit of the generalized Dyson Brownian motions or log gases, defined as the system of

N ≥ 1 interacting particles


dX i,N

t =
√

2
βN
dBi

t + 1
N

∑
1≤j ̸=i≤N

1

Xi,N
t −Xj,N

t

dt− 1
2
V ′(X i,N

t )dt, 1 ≤ i ≤ N,

X i,N
t=0 = X i,N

0 .

(1.1.1)

(X i,N
t )t>0,1≤i≤N are the positions of the particles living in R and starting initially at the

i.i.d random variables (X i,N
0 )1≤i≤N , (Bi

t)t≥0,i≥1 is a collection of i.i.d standard Brownian

motions, β ≥ 1 is the Dyson index and V is an external confining potential, competing

with the repulsive force W (x − y) := − log |x− y|. When β = 1, 2, 4 and V = 0, Dyson

proved in [32] that the ordered eigenvalues (X1,N
t ≤ X2,N

t ≤ · · · ≤ XN,N
t )t≥0 of N × N

Hermitian random matrices with real, complex or quaternion Brownian entries, solve

SDE (1.1.1). The present unidimensional model is therefore closely related to the random

matrix theory and the study of the Gaussian Orthogonal Ensemble, Gaussian Unitary

Ensemble and Gaussian Symplectic Ensemble. The extension of the model to higher

dimensions, called the Coulomb gas model, is fundamental in understanding the physical

phenomena of vortices in the Ginzburg-Landau model [102].
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The existence of particles (X i,N
t )t≥0,1≤i≤N is a priori not obvious due to the singularity

of the interacting Coulomb force W . In a recent paper [82, Theorem 1.1], Li et al.

proved that if V ∈ C1(R) and under non-restrictive assumptions on V ′, the collision time

T := inf{t ≥ 0 : ∃ i ̸= j, X i,N
t = Xj,N

t } is almost-surely infinite for initial conditions

X1,N
0 < X2,N

0 < · · · < XN,N
0 and that the stochastic differential equation (SDE) (1.1.1)

has a unique strong solution defined at all times. They established that the mean-field

limit of the empirical measure (µN
t )t≥0 =

(
1
N

∑N
i=1 δXi,N

t

)
t≥0

solves the non-linear and

non-local Fokker-Planck partial differential equation (PDE)

∂tµt(x) = ∂x

(
µt(x)

(
1

2
V ′(x)−Hµt(x)

))
, (t, x) ∈ [0, T ]× R, (1.1.2)

with initial data µ0(dx) = P (X1,∞ ∈ dx) and where H is the Hilbert transform. In the

case of quadratic potential V (x) = x2

2
, this result was proved in [98].

Under mild assumptions on the growth of V (see [12] and [101]), this equation can be

seen as the gradient flow of the entropy

Σ(µ) :=
1

2

∫
R
V (x)µ(dx)− 1

2

∫
R×R

log |x− y|µ(dx)µ(dy), (1.1.3)

for which there exists a unique minimizer µV .

A natural question is to study the convergence of (µt)t≥0 towards the equilibrium

measure µV . Under strong assumptions on the convexity of V - which are natural in

the context of a gradient flow - Li et al. [82, Theorem 1.8] established the exponential

convergence of (µt)t≥0 towards µV , with respect to the Wasserstein topology, whose metric

is denoted W2. A similar result, obtained under weaker convexity assumptions, was

established in [80, Theorem 2].

Both results rely on the Bakry-Émery strategy, which is a powerful tool to quantify the

rate of convergence towards equilibrium by deriving inequalities between the functionals
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Σ, W2(·, µV ) and the entropy dissipation, defined by

D(µ) :=

∫
R

∣∣∣∣12V ′(x)−Hµ(x)

∣∣∣∣2 µ(dx). (1.1.4)

In the simpler context of the well-understood overdamped Langevin dynamics, if we

assume
∫

exp(−V (x))dx = 1, then the Gibbs state ρV (dx) := exp(−V (x))dx can be

simulated by running for long times the process

dXt = −1

2
V ′(Xt)dt+ dBt. (1.1.5)

This equation can be interpreted as the gradient flow of the relative entropy H with

respect to ρV

H(µ) :=


1
2

∫
log µ(dx)

ρV (dx)
µ(dx) if µ is absolutely continuous with respect to ρV ,

+∞ otherwise,

(1.1.6)

whose minimizer is the Gibbs measure. Here µ(dx)
ρV (dx)

denotes the Radon-Nikodym deriva-

tive of µ with respect to ρV . Under the assumption that V (x) − ηx2 is convex for some

η > 0, the exponential stability towards ρV of the laws (ρt)t≥0 of the solution to SDE

(1.1.5) has been established in [7]. This was achieved by proving the logarithmic Sobolev

inequality

H(ρt) ≤ c1I(ρt), t ≥ 0, (1.1.7)

where I is the Fisher information I(ρt) := − d
dt
H(ρt) = 1

4

∫
|∂xρt(x)|2ρt(dx), and the

transportation inequality

W2(ρt, ρV )2 ≤ c2(H(ρt)−H(ρV )), t ≥ 0. (1.1.8)

In (1.1.7) and (1.1.8), the constants c1, c2 > 0 only depend on η.

For the log gases (1.1.2), corresponding logarithmic Sobolev and transportation in-
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equalities were established in [80] and [82], taking into account the technical difficulty of

the nonlocal nonlinearity of the interacting potential W . Both results require the con-

vexity of potential V and fail to capture the important case of the double-well potential

Vg,c(x) := g
x4

4
+ c

x2

2
, x ∈ R, g > 0, c < 0. (1.1.9)

Near the origin, V ′′
g,c < 0 and the convexity assumptions of [82] and [80] are not satisfied.

The main result of Chapter I is the derivation of a new version of the so-called Entropy-

Wasserstein-Information inequality (HWI) that allows establishing exponential stability

for the double-well potential Vg,c when −c > 0 is small enough. It answers partially

Conjectures 7.2 and 7.3 [82] that predict exponential stability towards µV for all c ∈

[−2, 0). We also answer positively to the Conjecture 7.3 [12], regarding to the stability

for the non-confining potential V (1.1.9) when g < 0 and c > 0.

1.2 Well-posedness of the supercooled Stefan prob-

lem

In the second chapter, we study the well-posedness of the mean-field limit of the system

of N ≥ 1 particles 
X i,N

t = X i
0− +Bi

t − ΛN
t , t ≥ 0,

τi,N = inf{t ≥ 0 : X i,N
t ≤ 0},

ΛN
t = 1

N

∑N
i=1 1τi,N≤t,

(1.2.1)

where (X i
0−)1≤i≤N are i.i.d. real positive random variables and (Bi

t)t≥0,1≤i≤N are i.i.d

Brownian motions. This model appears, under various forms, in the modeling of inter-

bank risk ([91], [92]), the study of probabilistic growth models [29], and models from

computational neuroscience ([26],[25], [100]).
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The mean-field limit of (1.2.1) is the McKean-Vlasov SDE


Xt = X0− +Bt − Λt, t ≥ 0,

τ := inf{t ≥ 0 : Xt ≤ 0},

Λt = P (τ ≤ t) , t ≥ 0.

(1.2.2)

A singular aspect of SDE (1.2.2) is the necessity of jump discontinuities in the frontier Λ

under generic initial conditions. The solutions minimizing the jump sizes are the so-called

physical solutions and satisfy the physicality condition

Λt − Λt− = inf
{
x > 0 : P (τ ≥ t, Xt− ∈ (0, x]) < x

}
, t ≥ 0. (1.2.3)

After explosion times, the front Λ is typically only 1/2-Hölder, and therefore the

difficulty of analyzing SDE (1.2.2) is dual. Aside of the inherent difficulty of fixed-point

problems, due to the McKean-Vlasov nature of the equation, understanding the dynamics

of (Xt)t≥0 and (Λt)t≥0 amounts to understanding the hitting time of a highly singular

moving boundary by a positive Brownian motion.

Besides the aforementioned applications of such model, SDE (1.2.2) was demonstrated

to be a powerful tool to reformulate the supercooled Stefan problem (see [28],[79]). This

classical problem from mathematical physics formalizes the dynamic of the freezing of

supercooled liquids, and is described by the free-boundary problem



∂tu(t, x) = 1
2
∂xxu(t, x), x > Λt, t > 0,

u(0, x) = f(x), x ≥ 0 and u(t,Λt) = 0, t > 0,

Λ̇t = 1
2
∂xu(t, x+)|x=Λt , t ≥ 0,

Λ0 = 0,

(1.2.4)

where u is the negative of the temperature of the liquid relative to its equilibrium freezing
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point, f is the initial profile of temperature and the free boundary Λ describes the location

of a liquid-solid frontier over time. Formally, one can check that if X0− has density f and

(Xt)t≥0 is a solution of SDE (1.2.2), then the law u(t, x)dx of (Xt + Λt)1τ≥t gives rise to a

solution of PDE (1.2.4). While the existence of a solution to (1.2.4) has been established

only locally (see [69], [104]) - until the explosion time T ≥ 0 such that limt→T,t<T Λ̇t = +∞

- reformulation (1.2.2) allows the definition of global solutions.

The present boundary problem describes the supercooled Stefan problem on the real

line and one phase. A similar formulation to probabilistic formulation (1.2.2) can be

written for higher dimensions and multiple phases (see [44],[5]).

If the initial condition X0− has a density f that changes monotonicity finitely many

times over compact intervals, Delarue, Nadtochiy and Shkolnikov proved in [28], the

uniqueness of a strong physical solution for SDE (1.2.2) and provided a full analysis of

the regularity of the front (Λt)t≥0.

The main result of Chapter II is the proof of uniqueness of physical solutions for oscil-

latory initial densities that violate the monotonicity condition. We use a new contraction

argument that replaces the local monotonicity condition of [28] by an averaging condi-

tion. We prove that this condition is satisfied by a fairly general class of oscillatory initial

densities, which can be described as the almost sure trajectories of stochastic processes.

The motivation of this work is the existence of natural oscillatory initial densities arising

in continuum limits of interacting particle systems (see [29], [74]).

1.3 Well-posedness of a local stochastic volatility model

In the third chapter, we investigate the well-posedness of the local stochastic volatility

(LSV) model

dSt

St

=

√
f(Yt)

E [f(Yt)|St]
σloc(t, St)dBt, t ≥ 0, (1.3.1)

in the context of calibration to European call options (C(t,K))t>0,K>0. Here (St)t≥0

designs the price process, (Bt)t≥0 is a Brownian motion, (Yt)t≥0 is any adapted Lévy-Itô

8



process, potentially correlated to (Bt)t≥0, f : R→ R+ is a positive smooth function and

σloc is the Dupire’s volatility given by

σloc(t,K) :=

√
2∂tC(t,K)

∂2KC(t,K)
. (1.3.2)

The main motivation behind the particular structure of SDE (1.3.1) is that according

to Gÿongy’s theorem [57], for a solution (St)t≥0, the fixed-time marginal distributions of

(St)t≥0 are independent of f and (Yt)t≥0, and are given by the marginal distributions of

the local volatility model dSloc
t = σloc(t, S

loc
t )Sloc

t dBt with initial data S0.

This property explains the interest of the quant community in considering SDE (1.3.1)

as a powerful class of models to solve calibration problems. Indeed, model (1.3.1) is

already calibrated to implied volatility surfaces, and one may use the degree of freedom

given by the process (f(Yt))t≥0 to jointly calibrate instruments depending on the whole

process (St)t≥0 to market data, consistently with the vanilla option market. For example,

model (1.3.1) may be - at first sight - a good candidate for jointly calibrating SPX

options and VIX options, or generating forward skew coherently with the market implied

volatility surface.

Among other methods (see [53]), practitioners solve numerically SDE (1.3.1) by ap-

proximating it with the system of M ≥ 1 interacting particles

dSi,M
t

Si,M
t

=

√√√√ f(Y i
t ) 1

M

∑M
j=1WδN (Si,M

t − Sj,M
t )

1
M

∑M
j=1 f(Y j

t )WδM (Si,M
t − Sj,M)

σ(t, Si,M
t )dBi

t, (1.3.3)

where the particle (Si,M , Y i,M)t≥0, 1 ≤ i ≤ M , starts initially at (Si,M
0 , Y i,M

0 ) and

(WδM )M≥1 :=
(

1
δM
W
(

·
δM

))
M≥1

is a family of smoothing kernels, converging - in the

sense of distributions - towards the Dirac mass δ0, when M goes to infinity.

However, on the mathematical level, the well-posedness of SDE (1.3.1) and the prop-

agation of chaos of system (1.3.3) is still an open problem and only partial results were

obtained.
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Let X := logS and let’s assume that (Yt)t≥0 is a diffusion satisfying

dYt = b(t,Xt, Yt)dt+ σY (t,Xt, Yt)dB
′
t (1.3.4)

where (B′
t)t≥0 is another standard Brownian motion with correlation ρ ∈ [−1, 1] with

(Bt)t≥0 and b : R+ ×R×R→ R and σY : R+ ×R×R→ R+ are the drift and volatility

coefficients of Y .

The non-linear and non-local Fokker-Planck PDE solved by the joint density of the

process (Xt, Yt)t≥0 can be written as


∂tp(t, x, y)− Lpp(t, x, y) = 0, (t, x, y) ∈ R+ × R× R,

p(0, x, y) = P (x, y), (x, y) ∈ R× R,
(1.3.5)

where Lp is the non-linear elliptic operator of the second order

Lpu :=
1

2
∂xx

[
f
∫
p(·, ·, z)dz∫

f(z)p(·, ·, z)dz
u

]
+

1

2
∂yy
[
σ2
Y u
]

+ ρ∂xy

[
f
∫
p(·, ·, z)dz∫

f(z)p(·, ·, z)dz
σY

]
+

1

2
∂x

[
f
∫
p(·, ·, z)dz∫

f(z)p(·, ·, z)dz
u

]
− ∂y [bu] , u ∈ C0,2(R+ × R× R).

(1.3.6)

Jourdain and Zhou proved in [67] the existence of a weak solution to SDE (1.3.1) when

(Yt)t≥0 is a continuous-time Markov chain taking finitely many values and the range of

f is small enough. This last condition echoes the result of Abergel and Tachet[2], who

proved by a perturbation argument the existence of a strong solution to PDE (1.3.5),

under the condition that supy∈R |f ′′(y)| is small enough. In [53, Section 11.3], Guyon

and Henry-Labordère witnessed in their numerical experiments, the divergence of various

approximation algorithms of SDE (1.3.1) if the range of f is too large, hinting the non-

existence of solutions or numerical instability of the algorithms.

The main objective of the third chapter is to establish the existence of a strong solution
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to a regularized version of SDE (1.3.1):


dXt = −1

2
ε+f(Y )p(t,Xt)

ε+E[f(Y )|Xt]p(t,Xt)
σ(t,Xt)

2dt+
√

ε+f(Y )p(t,Xt)
ε+E[f(Y )|Xt]p(t,Xt)

σ(t,Xt)dBt,

P (Xt ∈ dx) = p(t, x)dx,

Xt=0 = X0,

(1.3.7)

where Y is a discrete random variable taking finitely many values and ε > 0 is a fixed

regularization parameter. The main benefit of this regularization is that the calibration

property is conserved - fixed-time marginals are still given by the local volatility model.

Under the natural condition that the range of f is small enough, we prove the existence of

a unique strong solution to SDE problem (1.3.7). In addition, we prove the propagation

of chaos for the associated particle system. While weak existence has been established in

[67], well-posedness of (1.3.7) and the propagation of chaos result are out of reach due to

the lack of regularity of the solution.

1.4 Joint SPX/VIX calibration

In the last chapter, we leave the field of McKean-Vlasov equations and consider a more

practical, yet difficult, problem arising in the topic of calibration and address the joint

calibration of S&P 500 and VIX.

The VIX being defined as the forward realized variance of the SPX over one month

and the market of VIX options - used to hedge against market uncertainty - being liquid,

one may be naturally interested in finding a model calibrating jointly both instruments.

The use of joint calibration model rules out the possibility of arbitrage between actors

trading SPX and VIX options. Moreover, such models are necessary to give the fair price

of payoffs involving simultaneously SPX and VIX options. Nevertheless, since the opening

of VIX trades in 2006, this problem has been puzzling researchers and practitioners.

In the context of one-factor Markovian LSV, the problem can be stated as follows.

11



Denote (Xt)t≥0 the log-price of the SPX and (Yt)t≥0 another process driving the volatility

of (Xt)t≥0, and consider the controlled SDE


dXt = −1

2
σα
X(t,Xt, Yt)

2dt+ σα
X(t,Xt, Yt)dB

1
t ,

dYt = µα
Y (t,Xt, Yt)dt+ σα

Y (t,Xt, Yt)
(
ρα(t,Xt, Yt)dB

1
t

+
√

1− ρα(t,Xt, Yt)2dB
2
t

)
,

(1.4.1)

where (B1
t )t≥0 and (B2

t )t≥0 are two independent Brownian motions, α ∈ Rd, d ≥ 1 is the

control parameter, σα
X is the volatility of the log-price, µα

Y is the drift of Y and σα
Y the

volatility of Y , and ρα is the correlation between the two Brownian motions driving the

dynamics of X and Y . In this Markov model, with classical notations, the VIX2 at t ≥ 0

is given by

VIX2
t :=

1

τ

∫ t+τ

t

E
[
σα
X(s,Xs, Ys)

2|Xt, Yt
]
ds, (1.4.2)

where τ = 30
365

(30 days). VIX call options are written as E
[(√

VIX2
t −K

)
+

]
, t,K ≥ 0.

Model (1.4.1) is said to be jointly calibrated to the market if the SPX and VIX smiles,

and SPX and VIX futures, computed in the model, match closely given market data at

multiple maturities.

The first attempts to solve the problem were using traditional parametric continuous

time models (Heston[36] , Bergomi [63], CEV [38]) but failed to mediate the large negative

skew of short-term SPX options and the low level of VIX implied volatilities. More

general models incorporating jumps were therefore considered [73],[96], [8], [92],[97], but

the calibration results were not satisfactory.

In more recent years, different approaches were used to solve the problem. Guyon was

the first to calibrate exactly to SPX and VIX smiles by formulating the calibration as

a martingale optimal transport problem [46]. The discrete time model of [46] was later

extended to continuous time [47] and an efficient calibration method was derived in [51].

A similar but more general approach was used by Guo et al. in [42].

Parametric continuous stochastic volatility models were shown to calibrate jointly
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SPX and VIX options. In [62], the authors calibrate a ”quintic Ornstein-Uhlenbeck

volatility model”, with few parameters. In [22], signature based models were used to

solve the problem.

Our solution to the problem of joint calibration is part of the continuous modeling

approach. We used neural SDEs, which are natural extensions of neural ODEs to the

context of modeling of probabilistic physical dynamics. Neural ODEs - introduced in [19]

- are ODEs of the form y′ = F (t, y) where F is a neural network, and can be seen as the

continuous limit of specific neural networks (among which residuals networks, recurrent

neural network) whose inner state transformation operations can be written as a step of

the Euler method. Neural SDEs are SDEs whose drifts and volatilities are modeled as

neural networks.

The key benefits of such models are the expressive power of neural networks, and the

efficiency of the available training algorithms [84], [111], [108], [70].

In Chapter IV, the family of models (1.4.1), where σα
X , σ

α
Y , µ

α
Y and ρα are neural net-

works and with weights controlled by α, is shown to fit jointly market data for maturities

spanning over 8 months (and including short maturities). Stochastic gradient descent and

backpropagation are used to solve the calibration problem, written as the minimization

of a suitable loss.

We observe numerically that the joint calibration model is actually a pure path-

dependent volatility model confirming the findings in [45].
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Chapter 2

Trend to equilibrium for granular

media equations under non-convex

potentials and application to log

gases

The present chapter studies the extension of stability results proved for the granular

media equation

∂tµ = ∇ ·
[
µ∇

(
1

2
V +W ∗ µ

)]
(2.0.1)

to non-convex potentials. The unknown µ is a time-dependent probability measure on

Rd, V : Rd → R is an external potential and W : Rd → R is an interaction potential.

The non-local and non-linear partial differential equation (2.0.1) is the formal gradient

flow of the entropy

Σ(µ) =
1

2

∫
Rd

V (x)µ(dx) +
1

2

∫
Rd×Rd

W (x− y)µ(dx)µ(dy), (2.0.2)
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whose dissipation is defined as

D(µ) ≡
∫
Rd

∣∣∣∣∇(1

2
V +W ∗ µ

)∣∣∣∣2 µ(dx). (2.0.3)

Under the two sets of assumptions D2V ≥ 2λ and D2W ≥ 0 or D2V ≥ 0 and

D2W ≥ λ, for some λ > 0, Carrillo et al. established in [18] the celebrated HWI

inequality

Σ(ρ0)− Σ(ρ1) ≤
√
D(ρ0)W2(ρ0, ρ1)−

λ

2
W2(ρ0, ρ1)

2, (2.0.4)

W2 being the Wasserstein distance and ρ0, ρ1 having finite entropy and belongs to M2,

the set of probability measures with finite second-order moment. This inequality implies

successively a transportation inequality, a log-Sobolev inequality and exponential stability

with respect to the Wasserstein distance towards a minimizer µ∞ of the entropy

W2(µt, µ∞) ≤
√

2 (Σ(µ0)− Σ(µ∞))

λ
e−λt, ∀t ≥ 0. (2.0.5)

The primary aim of this paper is to extend this method to non-strictly convex po-

tentials. More precisely, we allow V to be non-convex near the origin, according to the

following assumptions.

Assumptions 2.0.1. There exist α, β, γ, r > 0 such that the C2 potentials V,W satisfy

(A1) D2V (x) ≥ −β for x ∈ Rd,

(A2) D2V (x) ≥ α for |x| ≥ r,

(A3) V is symmetric: V (x) = V (−x) for x ∈ Rd,

(A4) W is convex and D2W (x) ≥ γ for |x| ≤ 2r,

(A5) W is symmetric: W (x) = W (−x) for x ∈ Rd.

Under those assumptions, we prove the following
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Theorem 2.0.2. Assume that Assumptions 2.0.1 are satisfied. Let ρ0, ρ1 ∈ M2 with

finite entropy. Define

Pr = max

(∫
|x|>r

ρ0(dx),

∫
|x|>r

ρ1(dx)

)
. (2.0.6)

If ρ0 and ρ1 have the same center of mass, then

Σ(ρ0)− Σ(ρ1) ≤
√
D(ρ0)W2(ρ0, ρ1)−

λ

2
W2(ρ0, ρ1)

2, (2.0.7)

where the constant λ is given by

λ =
min (α, 2γ − β)

2
− 2γPr. (2.0.8)

If ρ0 and ρ1 are symmetric, then (2.0.7) holds with the better constant λ:

λ =
min

(
α, 2γ

(
1− 2Pr)− β

)
2

. (2.0.9)

Remark 2.0.3.

(i) The method of establishing HWI inequalities is not the only one to derive stability

rates. We can cite the strategy of Bakry-Émery [6], which consists of computing

the dissipation of the entropy dissipation or the method of characteristics or even

ad-hoc computations similar to what is done in [81]. In any case, the computations

turn out to be very similar.

(ii) HWI inequality (2.0.7) is slightly different from usual HWI inequalities, because λ

depends on ρ0 and ρ1 through their tail probabilities. Therefore, application of our

modified HWI inequality requires beforehand uniform bound of those tail probabili-

ties, by uniformly bounding the moments for example.

(iii) Our proof relies heavily on exploiting the convexity of W , which requires the as-
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sumptions of a fixed center of mass or a symmetric initial data (see Theorem 2.2

[18] for example or [13] and [14]).

(iv) Consider the internal energy U

U(µ) =

∫
Rd

U(µ(x))µ(dx), (2.0.10)

where U : R∗
+ → R satisfies the dilation condition that λ ∈ R∗

+ → λdU(λ−d) is

convex and non-increasing. The conclusions of Theorem 2.0.2 hold with the same

constants for the entropy

µ 7→ U(µ) + Σ(µ). (2.0.11)

Typically for U(ρ) = ρ log ρ, our approach can be used to prove exponential stability

of McKean-Vlasov diffusions under non-convex external potentials (see [107]).

In the same fashion of Theorem 2.3 [18], we investigate the case of V convex (but not

strictly convex) and W degenerately convex at infinity.

Assumptions 2.0.4. V and W belong to C2(Rd) and C2(Rd−{0}) respectively and there

exist positive constants c and η such that

(B1) D2V (x) ≥ 0 for x ∈ Rd,

(B2) D2W (x) ≥ c
|x|η for x ∈ Rd − {0}.

Under those assumptions and additional technical Assumptions 2.3.1, postponed to

Section 2.3, we prove the following

Theorem 2.0.5. Assume that Assumptions 2.0.4 and 2.3.1 are satisfied. Let ρ0, ρ1 ∈M2

with finite fourth moments and finite entropy. Define

m = max

(∫
Rd

|x|4ρ0(dx),

∫
Rd

|x|4ρ1(dx)

)
. (2.0.12)
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Then, there exists a constant C > 0 depending only on m, c and η such that the following

HWI inequality holds

Σ(ρ0)− Σ(ρ1) ≤
√
D(ρ0)W2(ρ0, ρ1)− CW2(ρ0, ρ1)

η+2. (2.0.13)

This variant of the HWI inequality (2.0.7) implies algebraic stability, meaning

W2(µt, µ∞) ≤ C

t1/η
, ∀t ≥ 1. (2.0.14)

The second contribution of this paper is the application of the previous results to

log gases. Those gases are obtained by taking W = − log | · | in the unidimensional case

d = 1. It leads to the Fokker-Planck equation

∂tµt = ∂x

[
µt

(
1

2
V ′ −Hµt

)]
, (2.0.15)

where H denotes the Hilbert transform. The logarithmic potential has a singularity at

the origin and is only convex on the half-lines R∗
+ and R∗

−. Because of these difficulties,

the previous theorems do not apply directly and the derivation of the analogue of (2.0.7)

is more involved. This is the purpose of Theorem 2.0.6, which extends the application of

HWI inequalities to log gases.

Theorem 2.0.6. Let V be a C2 symmetric potential satisfying Assumptions (A1)- (A3)

and let W = − log | · |. Then the conclusions of Theorem 2.0.2 hold for probability mea-

sures with density in L∞(R), with γ = 1
4r2

.

This result and its proof have two main applications. The first concerns log gases under

a general convex potential V . Under appropriate growth assumption of V , ensuring the

existence and uniqueness of the minimizer of the entropy µV , we prove that any solution

converges towards µV at a square root rate. The definition of a solution to (2.0.15) is

given afterwards in Section 2.4.
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Theorem 2.0.7. Let V be a C2 convex potential satisfying growth Assumptions 2.4.1.

Let µV be the unique minimizer of the entropy and (µt)t≥0 be a solution of (2.0.15). Then

we have algebraic stability towards µV

W2(µt, µV ) ≤ C√
t
, ∀t ≥ 1, (2.0.16)

for some constant C > 0.

To our knowledge, in the case of log gases, the weakest assumptions required for an

explicit equilibrium were strict convexity at least away of the origin (see [81]). Our result

weakens this assumption, the cost being a slower rate.

The second application of Theorem 2.0.6 concerns quartic potentials V , defined by

Assumptions 2.0.8. For some constants g, c ∈ (−∞, 0), (C1) or (C2) is satisfied

(C1) V (x) = x4

4
+ cx

2

2
for x ∈ R,

(C2) V (x) = g x4

4
+ x2

2
for x ∈ R.

For c < 0, quartic potential (C1) is non-convex and does not fall under the scope of

the work of Ledoux and Popescu [81]. After deriving moment estimates (which already

imply stability and provide a simple proof to Theorem 1.1 [30]), we apply Theorem 2.0.6

to derive an exponential stability rate towards the unique minimizer µV of the entropy,

for solutions with a fixed center of mass or with a symmetric initial data.

Theorem 2.0.9. Let c ∈
(
− 1

4
√
17
, 0
)
and V be defined by (C1). Let (µt)t≥0 be a solution

of (2.0.15) with a fixed center of mass and finite fourth moments. Assume that the

moment condition ∫
R
x2µ0(dx) ≤ −c+

√
c2 + 4

2
, (2.0.17)

is satisfied. Then (µt)t≥0 is exponentially stable towards µV with respect to the Wasser-

stein distance

W2(µt, µV ) ≤
√

2(Σ(µ0)− Σ(µV ))

λ
e−λt, ∀t ≥ 0. (2.0.18)
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The rate λ is given by

λ =
1

16
(
−c+

√
c2 + 4

) +
c

2
> 0. (2.0.19)

Similarly, if c ∈
(
− 1√

6
, 0
)

and if (µt)t≥0 is a solution of (2.0.15) with finite fourth

moments and a symmetric initial data µ0, then under the same moment condition, (µt)t≥0

is exponentially stable towards µV with respect to the Wasserstein distance with rate λ

given by

λ =
1

2
(
−c+

√
c2 + 4

) +
c

2
> 0. (2.0.20)

The assumption of a fixed center of mass or a symmetric initial data are required to

exploit easily the strict convexity of W . It leads to tractable computations and exact

numerical values. We are able to relax those assumptions in the following theorem, and

assume only lower-bounded second moments for the initial data. We prove exponential

stability under weaker assumptions but only for c ∈ (c∗, 0) with c∗ ∼ 10−9.

Theorem 2.0.10. There exists c∗ < 0, such that if c ∈ (−c∗, 0) and if (µt)t≥0 is a solution

of (2.0.15) with finite sixth moments and initial data satisfying

(
2

−c+
√
c2 + 16

)4

≤
∫
x2µ0(dx) (2.0.21)

and ∫
x4µ0(dx) ≤

(
−c+

√
c2 + 12

2

)2

, (2.0.22)

then (µt)t≥0 is exponentially stable towards the equilibrium µV .

For g < 0, a new difficulty arises due to the fact that the quartic potential (C2) is

neither convex nor confining. Nevertheless, we manage to establish exponential stability

for g ∈
(
− 1

81+36
√
5
, 0
)

and for well-defined solutions. This result is stated in the following

theorem and answers a conjecture formulated in [12] (see Conjecture 7.3 [83] as well).
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Theorem 2.0.11. Let g ∈
(
− 1

81+36
√
5
, 0
)
and m > 0 satisfying

m <

√
− 1

3g
− 4√
−g
− 3. (2.0.23)

Let µ0 be an initial measure with supp(µ0) ⊂ [−m,m]. Then any solution (µt)t≥0 of

(2.0.15) with quartic V (C2) is well-defined and converges exponentially towards a sta-

tionary measure µ∞

W2(µt, µ∞) ≤
√

2 (Σ(µ0)− Σ(µ∞))

λ
e−λt, ∀t ≥ 0, (2.0.24)

with rate λ given by

λ =
1

2

[
1 + 3g

(
m2 +

4√
−g

+ 3

)]
> 0. (2.0.25)

Moreover, µ∞ is a local minimizer of the entropy

supp(µ) ⊂

(
−

√
m2 +

4√
−g

+ 3,

√
m2 +

4√
−g

+ 3

)
=⇒ Σ(µ∞) ≤ Σ(µ), (2.0.26)

for all µ ∈M2.

The chapter is structured as follows. In Section 2.1, we recall some preliminary facts

collected from [109] and [18], and we introduce notation. Section 2.2 contains the proof

of Theorem 2.0.2 and its corollary concerning stability of solutions. In Section 2.3, we

establish the proof of Theorem 2.0.5 and its implications. In Section 2.4, we consider log

gases and prove Theorems 2.0.6 - 2.0.11. The appendix gathers auxiliary proofs.

This chapter is based on [89].
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2.1 Preliminaries and notations

In the whole paper, we denote byM the set of probability measures on Rd, and we define

for p ≥ 1

Mp =

{
µ ∈M :

∫
x∈Rd

|x|pµ(dx) <∞
}
. (2.1.1)

We recall the definition of the Wasserstein metric W2 on M2

W2(ρ0, ρ1) =

[
inf

γ∈Γ(ρ0,ρ1)

∫
Rd×Rd

|x− y|2γ(dx, dy)

]1/2
,

where Γ(ρ0, ρ1) denotes the set of couplings between ρ0 and ρ1 (see [109]). According to

Brenier Theorem, if ρ0 and ρ1 have a density, there exists a unique optimal transport

map T = ∇ϕ, gradient of a convex function ϕ : Rd → R, ρ0-almost everywhere, such that

ρ1 is the push-forward measure ρ1 = T#ρ0 and such that

W2(ρ0, ρ1) =

[ ∫
Rd

|x− T (x)|2ρ0(dx)

]1/2
. (2.1.2)

Recall from [86], that a functional F :M2 → R is said to be displacement convex if

s 7→ F (ρs) is a convex function, where (ρs)s∈[0,1] is the geodesic in (M2,W2) joining ρ0

to ρ1:

(ρs)s∈[0,1] = ([(1− s)Id+ sT ]#ρ0)s∈[0,1]. (2.1.3)

Strict displacement convexity is a stronger property, which plays a crucial role in

establishing equilibrium rates. The key to derive a HWI inequality is to prove that Σ is

λ-strictly convex along interpolation (2.1.3):

d2

ds2
Σ(ρs) ≥ λW2(ρ0, ρ1)

2, 0 < s < 1.
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We denote V and W the functionals

V : µ ∈M→ 1

2

∫
V (x)µ(dx),

W : µ ∈M→ 1

2

∫∫
W (x− y)µ(dx)µ(dy).

(2.1.4)

We define (µt)t≥0 ∈ C (R+,M) as a solution of (2.0.1) with initial data µ0 if for

all t ≥ 0, µt has a bounded density, that we shall denote µt(x), such that ∇W ∗ µt ∈

L∞
loc(R+ × Rd) and

∫
ϕdµt −

∫
ϕdµ0 = −

∫ t

0

ds

∫
∇ϕ · ∇

(
1

2
V +W ∗ µs

)
dµs, ∀ϕ ∈ C∞

0 (Rd), (2.1.5)

where C∞
0 (Rd) denotes the space of smooth and compactly supported test functions.

Finally, we end this section by recalling that Proposition 2.1 [18] ensures existence

of solutions to (2.0.1), under additional technical assumptions concerning the regularity

and the growth at infinity of the C2 potentials V and W , and establishes the dissipation

property

d

dt
Σ(µt) ≤ −D(µt), ∀t ≥ 0, (2.1.6)

for (µt)t≥0 a solution. Moreover, it is straightforward to prove that Σ and D are lower

semi-continuous for the weak topology. In Section 2.2, we assume that those technical

assumptions are satisfied. However, potentials W , as in Theorem 2.0.5, are not C2 and

Proposition 2.1 [18] cannot be applied. As the purpose of this work is not to prove the

dissipation property nor to discuss the existence of solutions, additional assumptions will

be therefore assumed to guarantee the validity of Proposition 2.1 [18].

2.2 Proof of Theorem 2.0.2

Proof of Theorem 2.0.2. The main difficulty is to alleviate non-convexity of V near the

origin with the strict convexity of W , and conversely to use the strict convexity of V

outside a neighborhood of the origin to alleviate non-strict convexity of W near the
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origin.

Let ρ0, ρ1 ∈M2 with finite entropy and the same center of mass. Let T be the optimal

transport map from ρ0 to ρ1 described by (2.1.2). Consider interpolation (2.1.3) between

ρ0 and ρ1 given by (ρs)s∈[0,1]. Set θ(x) = T (x)− x. In these circumstances, we have

W2(ρ0, ρ1)
2 =

∫
Rd

|θ(x)|2ρ0(dx)

and ∫
Rd

f(x)ρs(dx) =

∫
Rd

f(x+ sθ(x))ρ0(dx)

for all measurable bounded functions f .

The function t ∈ [0, 1] → Σ(ρt) is twice differentiable (see [18, Section 4.1]) and

Taylor’s formula applied between 0 and 1 gives

Σ(ρ1)− Σ(ρ0) =
d

ds

∣∣∣∣
0

Σ(ρs) +
1

2

d2

ds2

∣∣∣∣
s∗

Σ(ρs), (2.2.1)

for some s∗ ∈ (0, 1). Following computations of [18, Section 4.1], we find for all s ∈ (0, 1)

d

ds

∣∣∣∣
0

Σ(ρs) ≥ −
√
D(ρ0)W2(ρ1, ρ0) (2.2.2)

and

d2

ds2
Σ(ρs) ≥

1

2

∫
Rd

〈
D2V (x+ sθ(x)) · θ(x), θ(x)

〉
ρ0(dx)︸ ︷︷ ︸

(2.2.3.1)

+
1

2

∫
R2d

〈
D2W (x− y + s(θ(x)− θ(y)) · (θ(x)− θ(y)), θ(x)− θ(y)

〉
ρ0(dx)ρ0(dy)︸ ︷︷ ︸

(2.2.3.2)

.

(2.2.3)
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On the one hand, we have using Assumptions (A1) and (A2)

(2.2.3.1) ≥ α

2

∫
|x+sθ(x)|≥r

|θ(x)|2ρ0(dx)− β

2

∫
|x+sθ(x)|<r

|θ(x)|2ρ0(dx). (2.2.4)

On the other hand, under (A3)

(2.2.3.2) ≥ 1

2

∫
|x+sθ(x)|≤r
|y+sθ(y)|≤r

〈
D2W (x− y + s(θ(x)− θ(y))) · (θ(x)− θ(y)), θ(x)− θ(y)

〉
ρ0(dx)ρ0(dx)

≥ 1

2
γ

∫
|x+sθ(x)|≤r
|y+sθ(y)|≤r

(
|θ(x)|2 + |θ(y)|2 − 2 ⟨θ(x), θ(y)⟩

)
ρ0(dx)ρ0(dy)

≥ γ

∫
|x+sθ(x)|≤r

ρ0(dx)

∫
|x+sθ(x)|≤r

|θ(x)|2ρ0(dx)− γ

∣∣∣∣∣∣∣
∫

|x+sθ(x)|≤r

θ(x)ρ0(dx)

∣∣∣∣∣∣∣
2

.

(2.2.5)

Using the fact that
∫
Rd xρ0(dx) =

∫
Rd xρ1(dx), we can write

∫
|x+sθ(x)|≤r

θ(x)ρ0(dx) = −
∫

|x+sθ(x)|>r

θ(x)ρ0(dx) (2.2.6)

and by Cauchy-Schwarz inequality

γ

∣∣∣∣∣∣∣
∫

|x+sθ(x)|≤r

θ(x)ρ0(dx)

∣∣∣∣∣∣∣
2

= γ

∣∣∣∣∣∣∣
∫

|x+sθ(x)|>r

θ(x)ρ0(dx)

∣∣∣∣∣∣∣
2

≤ γ

∫
|x+sθ(x)|>r

ρ0(dx)

∫
|x+sθ(x)|>r

|θ(x)|2ρ0(dx).

(2.2.7)

The first integral in the left hand-side is equal to
∫
|x|>r

ρs(dx), and therefore combining
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estimations (2.2.5) and (2.2.7), it follows

(2.2.3.2) ≥ γ
[(

1−
∫

|x|>r

ρs(dx)
) ∫
|x+sθ(x)|≤r

|θ(x)|2ρ0(dx)

−
∫

|x|>r

ρs(dx)

∫
|x+sθ(x)|>r

|θ(x)|2ρ0(dx)
]
.

(2.2.8)

Noticing that for s ∈ [0, 1]

∫
|x|>r

ρs(dx) ≤
∫
|x|>r

ρ0(dx) +

∫
|T (x)|>r

ρ0(dx)

=

∫
|x|>r

ρ0(dx) +

∫
|x|>r

ρ1(dx)

≤ 2Pr,

(2.2.9)

we conclude from (2.2.3), (2.2.4), (2.2.8) and (2.2.9), by setting

λ =
min (α, 2γ − β)

2
− 2γPr

that

d2

ds2

∣∣∣∣
s∗

Σ(ρs) ≥ λ

∫
Rd

|θ(x)|2ρ0(dx) = λW2(ρ1, ρ0)
2. (2.2.10)

Combining (2.2.1), (2.2.2) (2.2.10), yields

Σ(ρ0)− Σ(ρ1) ≤
√
D(ρ0)W2(ρ0, ρ1)−

λ

2
W2(ρ0, ρ1)

2. (2.2.11)

In the special case when ρ0 and ρ1 are symmetric, we observe that the quantity (2.2.6)

vanishes. Indeed, define

A = {x ∈ Rd : |(1− s)x+ sT (x)| ≤ r}

27



and

c =

∫
A

(x− T (x))ρ0(dx) =

∫
|x+sθ(x)|≤r

θ(x)ρ0(dx).

From the uniqueness of the optimal transport map T , the symmetry of ρ0 and ρ1 and

the fact that W2(ρ0, ρ1)
2 =

∫
Rd(x + T (−x))2ρ0(dx), we see that the map T is odd. Con-

sequently, A is a symmetric domain and x 7→ x − T (x) is odd. Therefore, c = 0 and

(2.2.11) holds with

λ ≡
min

(
α, 2γ

(
1− 2Pr)− β

)
2

.

We derive the following asymptotic behavior and inequalities from (2.0.7).

Corollary 2.2.1. Assume that Assumptions 2.0.1 are satisfied and that Σ is lower-

bounded. Let (µt)t≥0 be a solution of (2.0.1) with a fixed center of mass. Define

Pr = sup
t≥0

∫
|x|>r

µt(dx) (2.2.12)

and assume that

λ =
min (α, 2γ − β)

2
− 2γPr > 0. (2.2.13)

If the family (µt)t≥0 is tight with respect to the weak topology then (µt)t≥0 exponentially

converges, with respect to the Wasserstein distance, to the unique minimizer µ∞ of the

entropy Σ among the class of probability measures ρ satisfying

∫
Rd

xρ(dx) =

∫
Rd

xµ0(dx) and Pρ(|x| > r) ≤ sup
t≥0

Pµt(|x| > r). (2.2.14)

Moreover, the following inequalities hold:

(i) Logarithmic Sobolev inequality

2λ (Σ(µt)− Σ(µ∞)) ≤ D(µt), ∀t ≥ 0. (2.2.15)
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(ii) Transportation inequality

W2(µt, µ∞) ≤
√

2 (Σ(µt)− Σ(µ∞))

λ
, ∀t ≥ 0. (2.2.16)

(iii) Exponential stability

W2(µt, µ∞) ≤
√

2 (Σ(µt)− Σ(µ∞))

λ
e−λt, ∀t ≥ 0. (2.2.17)

Finally, if µ0 is symmetric and

λ =
min

(
α, 2γ

(
1− 2Pr)− β

)
2

> 0, (2.2.18)

then the same inequalities hold with this better rate.

Proof. Let µ∞ be a limit point of (µt)t≥0 for the weak topology. By lower semi-continuity

of D

lim sup
t→∞

d

dt
Σ(µt) ≤ − lim inf

t→∞
D(µt) ≤ −D(µ∞).

If −D(µ∞) < 0, then lim supt→∞
d
dt

Σ(µt) ≤ −D(µ∞) < 0 and there exist t0 and c such

that Σ(µt) ≤ −1
2
D(µ∞)t+ c for t > t0. That is Σ(µt)

t→∞−−−→ −∞. As Σ is bounded below

by assumption, D(µ∞) = 0 and µ∞ is a stationary solution.

Moreover, by weak convergence, µ∞ will satisfy conditions (2.2.14). We can therefore

apply Theorem 2.0.2 to (ρ0, ρ1) = (µt, µ∞) (notice that in the case of µ0 symmetric, µt

stays symmetric at all times for t > 0 by symmetry of the potentials). According to the

HWI inequality (2.0.7)

Σ(µt)− Σ(µ∞)−
√
D(µt)W2(µt, µ∞) +

λ

2
W2(µt, µ∞)2 ≤ 0, ∀t ≥ 0.

Consequently the following discriminant is non-negative

D(µt)− 2λ (Σ(µt)− Σ(µ∞)) ≥ 0, ∀t ≥ 0 (2.2.19)
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and the log-Sobolev inequality (2.2.15) holds.

For the transportation inequality (2.2.16), take ρ1 = µt and ρ0 = µ∞. µ∞ being a

stationary solution of (2.0.1), D(ρ0) = 0, which gives

W2(µt, µ∞)2 ≤ 2 (Σ(µt)− Σ(µ∞))

λ
, ∀t ≥ 0. (2.2.20)

This proves the transportation inequality. Since measure µt can be replaced by any

measure ρ satisfying (2.2.14) (apply Theorem 2.0.2 to (µ∞, ρ)), we have

Σ(ρ)− Σ(µ∞) ≥ 0 (2.2.21)

and if Σ(ρ) = Σ(µ∞) it follows thatW2(ρ, µ∞) = 0. Therefore, µ∞ is the unique minimizer

of the entropy Σ among the class of probability measures ρ satisfying (2.2.14).

Finally, to prove (2.2.17), use successively the log-Sobolev inequality (2.2.15), property

(2.1.6), Gronwall’s lemma and the transportation inequality (2.2.16).

2.3 Proof of Theorem 2.0.5

As explained at the end of Section 2.1, the singularity of W at the origin requires ad-

ditional results, that should be proved for each W of application. Indeed, potentials of

interest which satisfy D2W (x) ≥ c
|x|η like W = − log | · | or W = | · |p, p ∈ [0, 2), do

not satisfy the assumptions of Proposition 2.1 [18]. Therefore, the dissipation property

(2.1.6) does not hold necessarily. Moreover, formula (2.2.3) is not justified. To overcome

those technical difficulties, we introduce the following additional assumptions.

Assumptions 2.3.1. V ∈ C2(Rd) and W ∈ C2(Rd − {0}) satisfy

(D1) Dissipation property (2.1.6):

d

dt
Σ(µt) ≤ −D(µt), ∀t ≥ 0. (2.3.1)
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(D2) For any geodesic (ρs)0≤s≤1 = ([(1− s)Id+ sT ] #ρ0)0≤s≤1, ρ0, ρ1 ∈ M2 with finite

entropy, the function s ∈ [0, 1]→W(ρs) is twice differentiable and for all s ∈ (0, 1)

d2

ds2
W(ρs) ≥

1

2

∫
x,y∈Rd

x ̸=y

〈
D2W (x− y + s(θ(x)− θ(y)) · (θ(x)− θ(y)), θ(x)− θ(y)

〉
ρ0(dx)ρ0(dy)

(2.3.2)

where θ(x) = x− T (x).

We are now ready for the proof of Theorem 2.0.5.

Proof of Theorem 2.0.5. Under Assumptions 2.0.4, V is displacement convex

d2

ds2
V(ρs) ≥ 0. (2.3.3)

In order to treat W , we follow the proof of Theorem 2.0.2 by fixing some r > 0 and

taking γ = 1
(2r)η

. We have immediately

d2

ds2
W(ρs) ≥

c

(2r)η

[
(1− Pρs(|x| > r))

∫
|x+sθ(x)|≤r

|θ(x)|2ρ0(dx)

− Pρs(|x| > r)

∫
|x+sθ(x)|≥r

|θ(x)|2ρ0(dx)
] (2.3.4)

and therefore

d2

ds2
W(ρs) ≥

c

(2r)η
Pρs(|x| ≤ r)

∫
Rd

|θ(x)|2ρ0(dx)− c

(2r)η

∫
|x+sθ(x)|≥r

|θ(x)|2ρ0(dx). (2.3.5)

By Cauchy-Schwarz inequality, we have the estimate

∫
|x+sθ(x)|≥r

|θ(x)|2ρ0(dx) ≤

√∫
Rd

|θ(x)|4ρ0(dx)
√
Pρs(|x| ≥ r). (2.3.6)
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Using the fact that ∫
Rd

|θ(x)|4ρ0(dx) ≤ 8m, (2.3.7)

we deduce

d2

ds2
W(ρs) ≥

c

(2r)η
Pρs(|x| ≤ r)W 2

2 (ρ0, ρ1)−
81/4m1/4c

(2r)η
Pρs(|x| ≥ r)1/4W2(ρ0, ρ1). (2.3.8)

The tail probability Pρs(|x| ≥ r) can be estimated by

Pρs(|x| ≥ r) ≤ 1

r4

∫
Rd

|sx+ (1− s)T (x)|4ρ0(dx) ≤ 8m

r4
. (2.3.9)

Moreover, with the simple estimate W2(ρ0, ρ1)
2 ≤ 2

√
m, we get

d2

ds2
W(ρs) ≥

c

(2r)η
W 2

2 (ρ0, ρ1)−
√

8mc

2ηrη+1
W2(ρ0, ρ1)−

4mc

2ηrη+2
. (2.3.10)

Choosing optimally r yields for some constant C > 0 depending only on η, m and c

that

d2

ds2
W(ρs) ≥ CW2(ρ0, ρ1)

η+2, ∀s ∈ (0, 1), (2.3.11)

from which we deduce the desired HWI inequality.

Corollary 2.3.2. Assume that Assumptions 2.0.4 and 2.3.1 are satisfied. Let (µt)t≥0 be

a solution of (2.0.1) with uniformly bounded fourth-order moments. Set

m = sup
t≥0

(∫
Rd

|x|4µt(dx)

)
. (2.3.12)

Then, the following holds for some positive constants δ, C depending only on m, c and η:

(i) Algebraic decay of the entropy

Σ(µt)− Σ(µ∞) ≤ Σ(µ0)− Σ(µ∞)[
1 + δ (Σ(µ0)− Σ(µ∞))η/(η+2) t

](η+2)/η
, ∀t ≥ 0. (2.3.13)
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(ii) Transportation inequality

W2(µt, µ∞) ≤ C (Σ(µt)− Σ(µ∞))
1

η+2 , ∀t ≥ 0. (2.3.14)

Therefore, we have algebraic stability with respect to W2 towards the minimizer µ∞ of

the entropy among the class of probability measures ρ satisfying

sup
t≥0

∫
Rd

|x|4µt(dx) ≤ m. (2.3.15)

Proof. The proof is similar to the proof of Corollary 2.2.1. The boundedness of moments

gives tightness, and we check easily that a limit point µ∞ (for the weak topology) is a

stationary solution. Taking (ρ0, ρ1) = (µ∞, µt) in HWI inequality (2.0.13) and noticing

that the minimum of power function in W2(µt, µ∞) (2.0.13) is non-positive, we derive

C ′ (Σ(µt)− Σ(µ∞))1+
η

η+2 ≤ D(µt) ≤ −
d

dt
[Σ(µt)− Σ(µ∞)] , ∀t ≥ 0, (2.3.16)

where C ′ depends only on m, c and η. Integrating leads to the decay estimate (2.3.13).

Taking (ρ0, ρ1) = (µt, µ∞) in (2.0.13) allows us to derive the transportation inequality

(2.3.14). Combining the two inequalities proves result (2.0.14).

2.4 Application to log gases

This section is devoted to the asymptotic behavior of uni-dimensional log gases. In all the

following, V will denote a symmetric external potential and W the logarithmic interaction

W = − log | · |. Entropy (2.0.2) is now half of the free entropy introduced by Voiculescu

in [110]

Σ(µ) =
1

2

∫
R
V (x)µ(dx)− 1

2

∫
R×R

log |x− y|µ(dx)µ(dy).
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Define the Hilbert transform of a measure µ ∈M

Hµ(x) ≡ −(W ∗ µ)′(x) = p.v.

∫
R

1

x− y
µ(dy).

where p.v. denotes the principal value.

The granular media equation becomes the Fokker-Planck (2.0.15), with the weak

formulation:

d

dt

∫
R
f(x)µt(dx) = −

∫
R
f ′(x)

(
1

2
V ′(x)−Hµt(x)

)
µt(dx), ∀f ∈ C∞0 (R), (2.4.1)

or equivalently

d

dt

∫
R
f(x)µt(dx) =

1

2

∫∫
R×R

f ′(x)− f ′(y)

x− y
µt(dx)µt(dy)

− 1

2

∫
R
V ′(x)f ′(x)µt(dx), ∀f ∈ C∞0 (R),

(2.4.2)

In the rest of the paper, we say that (µt)t≥0 ∈ C(R+,M), with initial data µ0 ∈ M2 ∩

L∞(R) with finite entropy, is a solution of (2.0.15) if (2.4.2) is satisfied and µt ∈ L∞(R)

for all t > 0.

Under the assumption

lim
|x|→∞

V (x)− 2 log |x| = +∞ (2.4.3)

the entropy is lower-bounded and there exists a unique minimizer µV (see [101])

Σ(µV ) ≤ Σ(µ), ∀µ ∈M. (2.4.4)

The entropy dissipation (2.0.3) is given by

D(µ) =

∫
R

∣∣∣∣12V ′(x)−Hµ(x)

∣∣∣∣2 µ(dx).
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The existence of solutions and the dissipation property (2.1.6) has been essentially

proved by Biane and Speicher in [12] (Theorem 3.1 and Proposition 6.1, see also [83])

under the assumption that V is C2 and satisfies the growth assumption

ax2 + b ≤ 1

2
xV ′(x), ∀x ∈ R, (2.4.5)

for some a > 0 and b ∈ R.

Combining conditions (2.4.3) and (2.4.5), we introduce the following assumptions

ensuring the existence of a minimizer and the gradient flow property.

Assumptions 2.4.1. There exist a > 0 and b ∈ R such that

� lim|x|→∞ V (x)− 2 log |x| = +∞,

� ax2 + b ≤ 1
2
xV ′(x), ∀x ∈ R.

This section is organized as follows. First, in order to prove Theorem 2.0.6, we es-

tablish that W = − log | · | satisfies a property similar to Assumption 2.3.1 (D2), which

allows therefore to apply Theorems 2.0.2 and 2.0.5 to log gases. We provide then in

Proposition 2.4.5 uniform bounds for the moments of a solution to (2.0.15). Those es-

timates are essential to prove tightness with respect to the Wasserstein distance and to

bound uniformly the quantities Pr. We state and prove Theorem 2.0.7 that gives alge-

braic convergence for any convex potential V . Finally, we consider quartic potential V

and prove in Theorems 2.0.9 and 2.0.11 exponential stability, when the parameters c and

g are small enough in absolute value.

2.4.1 HWI inequality

Despite the singularity of − log | · | at the origin and its non-convexity, we prove that W

is displacement convex and lower-bound explicitly the second order derivative. The case

of log gases will then fall under the scope of application of Theorems 2.0.2 and 2.0.5.

Let’s first recall the following well-known fact.
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Lemma 2.4.2. Let ρ0 and ρ1 be two measures on R with bounded positive densities. The

optimal transport map T carrying ρ0 to ρ1 is given by

T = F−1
ρ1
◦ Fρ0 (2.4.6)

where Fρ denotes the CDF of measure ρ. Moreover, T is differentiable and for all r > 0

sup
|x|≤r

T ′(x) ≤
sup|x|≤r ρ0(x)

inf |x|≤r ρ1(T (x))
<∞. (2.4.7)

We now prove Theorem 2.0.6.

Proof of Theorem 2.0.6. We first prove the result for measures with bounded positive

densities. We will then extend by approximation to measures with bounded densities.

Let ρ0, ρ1 ∈M2 ∩L∞(R). Assume either that ρ0 and ρ1 have the same center of mass or

are both symmetric. Let T be optimal transport map carrying ρ0 to ρ1

T = F−1
ρ1
◦ Fρ0 , (2.4.8)

and (ρs)0≤s≤1 the geodesic from ρ0 to ρ1

ρs = ((1− s)Id+ sT ) #ρ0. (2.4.9)

Let ε ∈
(
0, 1

2

)
, η > 0 and Bη = {x ∈ R : |x| ≤ η}.

Using the monotonicity of T and Lemma 2.4.2 and setting R(x, y) ≡ T (x)−T (y)
x−y

, we

have

0 ≤ sup
x,y∈Bη

x̸=y

R(x, y) ≤
sup
|x|≤η

ρ0(x)

inf
|x|≤T (η)

ρ1(x)
<∞. (2.4.10)

Introduce

Lε(x, y) =
R(x, y)− 1

1− ε+ εR(x, y)
, (2.4.11)
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such that for all s ∈ (ε, 1− ε) and x ̸= y

∣∣∣∣(1− s)(x− y) + s(T (x)− T (y))

(1− ε)(x− y) + ε(T (x)− T (y))

∣∣∣∣ = 1 + (s− ε)Lε(x, y). (2.4.12)

We see from the monotonicity of T and bound (2.4.10) that for all s ∈ (ε, 1− ε)

1 + (s− ε)Lε(x, y) =
1− s+ sR(x, y)

1− ε+ εR(x, y)
≥ ε

1− ε
≥ ε > 0 (2.4.13)

and that for all distinct x and y in Bη

1 + (s− ε)Lε(x, y) ≤ 1 +R(x, y)

1− ε
≤ 2 + 2 sup

x,y∈Bη

x ̸=y

R(x, y) <∞. (2.4.14)

Define

ωε = −1

2

∫∫
Lε(x, y)ρ0(dx)ρ0(dy). (2.4.15)

Using the inequality − log (1 + x) + x ≥ 0 for x+ 1 > 0, we deduce

W(ρs)−W(ρε)− (s− ε)ωε ≥
1

2

∫∫
x,y∈Bη

[− log (1 + (s− ε)Lε(x, y)) + (s− ε)Lε(x, y)]ρ0(dx)ρ0(dy).
(2.4.16)

Define the functions

GV : s ∈ [ε, 1− ε]→ V(ρs) =
1

2

∫
V (x+ sθ(x))ρ0(dx) (2.4.17)

and

GW : s ∈ [ε, 1− ε]→ 1

2

∫∫
x,y∈Bη

[− log (1 + (s− ε)Lε(x, y))] ρ0(dx)ρ0(dy). (2.4.18)
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By the regularity of V , GV is twice differentiable with

G′
V (ε) =

1

2

∫
V ′(x+ εθ(x))θ(x)ρ0(dx) (2.4.19)

and for all s ∈ (ε, 1− ε)

G′′
V (s) =

1

2

∫
V ′′(x+ sθ(x))θ(x)2ρ0(dx). (2.4.20)

By bounds (2.4.13) and (2.4.14), GW is twice differentiable as well and its derivatives

satisfy

G′
W (ε) = −1

2

∫∫
x,y∈Bη

Lε(x, y)ρ0(dx)ρ0(dy) (2.4.21)

and for all s ∈ (ε, 1− ε)

G′′
W (s) =

1

2

∫∫
x,y∈Bη

Lε(x, y)2

(1 + (s− ε)Lε(x, y))2
ρ0(dx)ρ0(dy). (2.4.22)

Notice that for all x ̸= y and s ∈ (ε, 1− ε)

Lε(x, y)2

(1 + (s− ε)Lε(x, y))2
=

(R− 1)2

(1− s+ sR)2

≤ R2

(1− s+ sR)2
+

1

(1− s+ sR)2

≤ 2

ε2
.

(2.4.23)

Therefore,

∫∫
x,y /∈Bη

Lε(x, y)2

(1 + (s− ε)Lε(x, y))2
ρ0(dx)ρ0(dy) ≤ 2

ε2

[∫
|x|≥η

ρ0(dx)

]2
. (2.4.24)

We deduce that for all s ∈ (ε, 1− ε)

G′′
W (s) ≥ 1

2

∫∫
(θ(x)− θ(y))2

(x− y + s(θ(x)− θ(y)))2
ρ0(dx)ρ0(dy)− 1

ε2

[∫
|x|≥η

ρ0(dx)

]2
. (2.4.25)
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Using (2.4.16) and Taylor’s formula, we deduce for u ∈ (ε, 1− ε) such that

Σ(ρ1−ε)− Σ(ρε)− (1− 2ε)(G′
V (ε) + ωε) ≥ (GV +GW )(1− ε)− (GV +GW )(ε)

− (1− 2ε)(GV +GW )′(ε)

=
1

2
(GV +GW )′′(u)(1− 2ε)2

(2.4.26)

where

(GV +GW )′′(u) ≥ 1

2

∫
V ′′(x+ uθ(x))θ(x)2ρ0(dx)

+
1

2

∫∫
(θ(x)− θ(y))2

(x− y + u(θ(x)− θ(y)))2
ρ0(dx)ρ0(dy)

− 1

ε2

[∫
|x|≥η

ρ0(dx)

]2
.

(2.4.27)

From there, we follow the computations of the proof of Theorem 2.0.2. Firstly notice

that

lim
ε→0

[G′
V (ε) + ωε] =

1

2

∫
V ′(x)θ(x)ρ0(dx)− 1

2

∫
[R(x, y)− 1]ρ0(dx)ρ0(dy) (2.4.28)

=

∫ (
1

2
V ′(x)−Hρ0(x)

)
ρ0(dx) (2.4.29)

≥ −
√
D(ρ0)W2(ρ0, ρ1). (2.4.30)

Secondly, taking γ = 1
4r2

and following (2.2.4) - (2.2.11), we obtain

1

2

∫
V ′′(x+ uθ(x))θ(x)2ρ0(dx) +

1

2

∫∫
(θ(x)− θ(y))2

(x− y + u(θ(x)− θ(y)))2
ρ0(dx)ρ0(dy)

≥ λrW2(ρ0, ρ1−ε)
2,

(2.4.31)

where λr is given either by (2.0.8) or (2.0.9).

Notice that this estimate is independent of u ∈ (ε, 1−ε). Recalling that W2(ρ0, ρ1−ε) =
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(1− ε)W2(ρ0, ρ1), we conclude that for all η > 0

Σ(ρ1−ε)− Σ(ρε) ≥ (1− 2ε)[G′
V (ε) + ωε] + λr(1− ε)2W2(ρ0, ρ1)

2

− 1

ε2

[∫
|x|≥η

ρ0(dx)

]2
.

(2.4.32)

From there, do successively η → ∞ and ε → 0 to derive the result. If ρ0 and ρ1 do

not have positive densities, apply (2.0.7) for the sequences

ρδi (dx) =

∫
e−(x−y)2/(2δ)

√
2πδ

ρi(dy), δ > 0, i = 0, 1, (2.4.33)

and let δ → 0. Notice that ρδi has a positive density and belong to L∞(R) with |ρδi |L∞(R) ≤
1√
2πδ

, and that the map ρi 7→ ρδi leaves the center of mass or the symmetry of the measure

ρi invariant. Therefore, using the result for measures with bounded positive densities, we

have for all δ > 0

Σ(ρδ1)− Σ(ρδ0) ≥ −
√
D(ρδ0)W2(ρ

δ
0, ρ

δ
1) + λrW2(ρ

δ
0, ρ

δ
1)

2. (2.4.34)

We have easily that limδ→0W2(ρ
δ
0, ρ

δ
1) = W2(ρ

δ, ρδ1).

Let X and Y be two independent random variables with probability distribution ρ0

and let Z be a random variable independent with X and Y , and with normal distribution.

Then, we can write

Σ(ρδ0) =
1

2
E [V ′(X + δZ)]− 1

2
E [log (X + δZ − Y − δZ)] , (2.4.35)

and

lim
δ→0

Σ(ρδ0) = Σ(ρ0). (2.4.36)
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Next, write

|D(ρ0)−D(ρδ0)| ≤
1

4

∣∣∣∣∫ V ′2ρ0 −
∫
V ′2ρδ0

∣∣∣∣
+

∣∣∣∣∫ (Hρ0)
2ρ0 −

∫
(Hρδ0)

2ρ0

∣∣∣∣
+

∣∣∣∣∫ (Hρδ0)
2ρ0 −

∫
(Hρδ0)

2ρδ0

∣∣∣∣
+

1

2

∣∣∣∣∫ V ′(Hρ0)ρ0 − V ′H(ρδ0)ρ
δ
0

∣∣∣∣ .
(2.4.37)

Notice that

lim
δ→0

∫
V ′2ρδ0 = lim

δ→0
E
[
V ′(X + δZ)2

]
=

∫
V ′2ρ0. (2.4.38)

Upper-bound the second term of (2.4.37)

∣∣∣∣∫ (Hρ0)
2ρ0 −

∫
(Hρδ0)

2ρδ0

∣∣∣∣ ≤ |ρ0|L∞

∫
|H(ρ0 − ρδ0)||H(ρ0 + ρδ0)|

≤ |ρ0|L∞

√∫
H(ρ0 − ρδ0)2

√∫
H(ρ0 + ρδ0)

2

=
√

2|ρ0|L∞

√∫
(ρ0 − ρδ0)2

√∫
ρ20 + (ρδ0)

2

≤ 2|ρ0|L∞

√∫
(ρ0 − ρδ0)2

√∫
ρ20,

(2.4.39)

where we used that ρ0 and ρδ0 belong to M(R) ∩ L∞(R) ⊂ L2(R), the isometry property

of the Hilbert transform and Young’s convolution inequality
∫

(ρδ0)
2 ≤

∫
ρ20.

Estimate the third term of (2.4.37) by

∣∣∣∣∫ (Hρδ0)
2ρ0 −

∫
(Hρδ0)

2ρδ0

∣∣∣∣ ≤ ∣∣∣∣∫ (Hρδ0)
4

∣∣∣∣1/2 ∣∣∣∣∫ (ρ0 − ρδ0)2
∣∣∣∣1/2 . (2.4.40)

Using the bounded-ness of the Hilbert transform for the norm L4 and the Young’s

convolution inequality, we deduce

∣∣∣∣∫ (Hρδ0)
2ρ0 −

∫
(Hρδ0)

2ρδ0

∣∣∣∣ ≤ C∥ρ0∥3/4L∞

√∫
(ρ0 − rhoδ0)2 (2.4.41)
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for some constant C > 0.

We see easily that under the assumption ρ0 ∈ L2(R)

lim
δ→0

∫
(ρ0 − ρδ0)2 = 0. (2.4.42)

and therefore with (2.4.39) and (2.4.41), we conclude that

lim
δ→0

∣∣∣∣∫ (Hρδ0)
2ρ0 −

∫
(Hρδ0)

2ρδ0

∣∣∣∣+

∣∣∣∣∫ (Hρ0)
2ρ0 −

∫
(Hρδ0)

2ρδ0

∣∣∣∣ = 0. (2.4.43)

In a very similar way, we show that

lim
δ→0

∣∣∣∣∫ V ′(Hρ0)ρ0 − V ′H(ρδ0)ρ
δ
0

∣∣∣∣ = 0. (2.4.44)

Finally, taking the limit δ → 0 in (2.4.34) gives the result.

Remark 2.4.3. Our theorem is similar to Theorem 1.4 [83], but we do not assume any

assumption regarding the compactness of the support. Therefore, our proof can be extended

to gases with a diffusive internal energy (like in [107] for example). In Theorem 5 [81],

the authors established a HWI inequality for log gases. Their result can be recovered by

considering a simpler version of estimate (2.4.16). Indeed, by applying − log (1 + x)+x ≥

0 on the whole space, we find

W(ρs)−W(ρ0)− (s− ε)ωε ≥ 0. (2.4.45)

Using this crude estimate, (2.4.32) becomes

Σ(ρ1−ε)− Σ(ρε) ≥ (1− 2ε) [G′
V (ε) + ωε] +

1

2
inf
x∈R

V ′′(x)(1− ε)2W2(ρ0, ρ1)
2. (2.4.46)
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Therefore under the assumption that infx∈R V
′′(x) ≥ 2λ > 0, letting ε→ 0, we find

Σ(ρ0)− Σ(ρ1) ≤
√
D(ρ0)W2(ρ0, ρ1)−

λ

2
W2(ρ0, ρ1)

2. (2.4.47)

2.4.2 Moment estimates

We establish upper-bounds for the moments of solutions of (2.0.15). Those estimates are

useful to prove tightness of a solution and to bound uniformly in t the tail probabilities

Pµt(|x| ≥ r). The idea is essentially to use dynamics (2.4.2) to get a differential inequation

satisfied by the moments.

Let’s start with the following lemma, justifying extension of test functions to power

functions. We delay the proof to the appendix.

Lemma 2.4.4. Let (µt)t≥0 be a solution of (2.0.15) such that for all t ≥ 0, µt has a finite

moment of order p ≥ 1. Assume that

1. s 7→
∫
R(1 + |V ′(x)|)|x|pµs(dx) ∈ L1

loc([0,∞)),

2. x 7→ |V ′(x)||x|p ∈ L1(R, µs) for all s ≥ 0.

Then the power function x ∈ R→ |x|p is a valid test function in (2.4.2).

Using this lemma, we prove

Proposition 2.4.5. Let (µt)t≥0 be a solution of (2.0.15) with finite moments up to order

p+ 2 for some p ≥ 2. Then, there exists Mp > 0 such that

sup
t≥0

∫
R
|x|pµt(dx) ≤Mp.

Proof. Denote mp(t) =
∫
R |x|

pµt(dx) for t, p ≥ 0. According to Lemma 2.4.4, we can

apply (2.4.2) with the test function f : x 7→ |x|p to obtain

ṁp(t) ≤
1

2

∫
R×R

|f ′(x)− f ′(y)|
|x− y|

µt(dx)µt(dy)− pamp(t) + p|b|pmp−2(t). (2.4.48)
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Without loss of generality, we may assume that |x| < |y|. We see easily that

|f ′(x)− f ′(y)|
|x− y|

≤ p
|x|x|p−2 − y|y|p−2|

|x− y|
≤ p(|x|p−2 + |y|p−2) + p|x| ||x|

p−2 − |y|p−2||
||x| − |y||

.

We check easily that if p ≥ 3, then the previous inequality implies

|f ′(x)− f ′(y)|
|x− y|

≤ p(|x|p−2 + |y|p−2) + p(p− 2)(|x|p−2 + |y|p−2)

and if 2 ≤ p < 3

|f ′(x)− f ′(y)|
|x− y|

≤ p(|x|p−2 + |y|p−2) + p(p− 2)|x|p−2.

In both cases for all x, y ∈ R

|f ′(x)− f ′(y)|
|x− y|

≤ p(|x|p−2 + |y|p−2) + p(p− 2)(|x|p−2 + |y|p−2). (2.4.49)

Using the fact that ml(t) ≤ m
l/p
p (t) for l ≤ p, and inserting (2.4.49) in (2.4.48), we

deduce the ordinary differential inequation

ṁp(t) ≤ −pamp(t) + p (|b|+ p− 1)m(p−2)/(p)
p (t), t ≥ 0. (2.4.50)

This inequality can be written as

ṁp(t) ≤ Q(mp(t)), t ≥ 0 (2.4.51)

where Q(x) = −pax+ p(|b|+ p− 1)x(p−2)/p satisfies Q(x) ∼
+∞
−pax.

We will show that this inequality implies the uniform boundedness of moments. Con-

sider M defined by:

M = sup{x ≥ 0 : Q(x) ≥ 0} =

(
|b|+ p− 1

a

)p/2

.
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Notice that mp is non-increasing for mp > M . Set Mp ≡ max(M,mp(0)) and T = {t ≥

0 : mp(t) ≤ M}. Without loss of generality we may assume that 0 ∈ T , otherwise mp is

decreasing until t ∈ T . The set R+ \ T is open (in R+) so can be written as

R+ \ T =
⋃
i

(si, ti).

On the one hand

ṁp(t) < 0 for si < t < ti

and on the other hand

mp(si) = mp(ti) = M.

Those two contradictory statements imply that T = R+ and for all t ≥ 0:

mp(t) ≤Mp.

This achieves the proof.

Remark 2.4.6. In the next section, we consider quartic potential V , and we derive in

the same way Proposition 2.4.7 providing uniform bounds for the second order moments

of a solution in a more precise way. Still, we would like to stress the usefulness of the

more general Proposition 2.4.5, which allows showing the stability of any solution with

finite moments of order p + 2 ≥ 2 towards a stationary measure with respect to the

Wasserstein distance of order p. Additionally, we will use this proposition for the proof

of Theorem 2.0.7.

2.4.3 Stability for convex potentials

From the proofs of Theorems 2.0.5 and 2.0.6, we derive Theorem 2.0.7.

Proof of Theorem 2.0.7. Fix ε ∈ (0, 1/2) and r > 0. Let ρ0, ρ1 ∈ M2 and T be the

optimal transport map from ρ0 to ρ1. Set θ = T − Id. Denote (ρs)s∈[0,1] the geodesic
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between ρ0 and ρ1. Following to the proof of Theorem 2.0.6, and using that the fact

thatD2V ≥ 0, there exists u ∈ (ε, 1− ε) such that

Σ(ρ1−ε)− Σ(ρε) ≥ (1− 2ε)[G′
V (ε) + ωε]

+
1

2

∫∫
(θ(x)− θ(y))2

(x− y + u(θ(x)− θ(y)))2
ρ0(dx)ρ0(dy)

− 1

ε2

[∫
|x|≥η

ρ0(dx)

]2
,

(2.4.52)

where ωε is defined as in (2.4.15).

From there, follow the proof of Theorem 2.0.5 by taking c = 1 and η = 2. Estimate

(2.0.13) becomes

1

2

∫∫
(θ(x)− θ(y))2

(x− y + u(θ(x)− θ(y)))2
ρ0(dx)ρ0(dy) ≥ CW2(ρ0, ρ1)

4. (2.4.53)

Inserting this estimate in (2.4.52) and then letting η →∞ and ε→ 0, we get

Σ(ρ1)− Σ(ρ0) ≥ −
√
D(ρ0)W2(ρ0, ρ1) + CW2(ρ0, ρ1)

4. (2.4.54)

The result follows by mimicking the proof of Corollary 2.3.2 and using the tightness of

(µt)t≥0 ensured by Proposition 2.4.5.

2.4.4 Stability for confining quartic potential

In this subsection, we consider the confining quartic potential V (x) = x4

4
+ cx

2

2
. We recall

the following results:

� If c ≥ 0, then V satisfies Ledoux’s assumptions [81], which allows proving exponen-

tial convergence towards the equilibrium measure µV [83], whose density is given

by

µV (dx) =
1

π

(
1

2
x2 + b

)√
a2 − x21[−a,a](x), (2.4.55)
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where

a2 =

√
4c2 + 48− 2c

3
, b =

c+
√

c2

4
+ 3

3
.

� If −2 < c < 0, µV is the unique stationary measure, and stability is proved in [30].

The density is again given by (2.4.55).

� If c < −2, Donati-Martin et al. have proved in [30] that there could be multiple

stationary measures.

The main result of this subsection will follow from Theorem 2.0.6 applied to quartic

potential V with c negative and close enough to zero.

The same considerations as in the proof of Proposition 2.4.5 lead to the following

estimate of second order moment.

Proposition 2.4.7. Let (µt)t≥0 be a solution of (2.0.15) with quartic V (C1). Assume

that (µt)t≥0 have finite fourth moments for all times t ≥ 0. Then

sup
t≥0

∫
R
x2µt(dx) ≤ max

(∫
R
x2µ0(dx),

−c+
√
c2 + 4

2

)
. (2.4.56)

We are now ready to prove the Theorem 2.0.9.

Proof of Theorem 2.0.9. Let µ0 ∈ M which satisfies the moment condition (2.0.17) and

(µt)t≥0 be a solution of (2.0.15). According to Proposition 2.4.5, the second order mo-

ments of (µt)t≥0 are uniformly bounded in time. Σ is lower-bounded and D is lower

semi-continuous, so similarly to the proof of Corollary 2.2.1, (µt)t≥0 weakly converges to-

wards a stationary solution µ∞. According to Proposition 2.7 [30], the unique stationary

solution for c ∈ [−2, 0) is the minimizer of the entropy µV . Finally, the uniform bounds

of the moments give tightness and convergence with respect to the Wasserstein distance.

Assume that (µt)t≥0 has a fixed center of mass. According to Theorem 2.0.6, for all

measures ρ0, ρ1 ∈M2 with finite entropy

Σ(ρ0)− Σ(ρ1) ≤ W2(ρ0, ρ1)
√
D(ρ0)−

λ

2
W2(ρ0, ρ1)

2, (2.4.57)

47



with constants (α, β, γ) given by


α = 3r2 + c,

β = −c,

γ = 1
4r2
,

(2.4.58)

and the rate

λ =
c

2
+ sup

r>0

[
min

(
3r2, 1

2r2

)
2

− Pr

2r2

]
. (2.4.59)

Under the assumption that

∫
R
x2µ0(dx) ≤ −c+

√
c2 + 4

2
(2.4.60)

we have for c ∈ [−2, 0)

Pr ≤
−c+

√
c2 + 4

2r2
. (2.4.61)

It follows that the constant λ (2.4.59) can be lower-bounded by

λ ≥ c

2
+

1

4
sup
r>0

1

r4

[
min

(
6r6, r2

)
− (−c+

√
c2 + 4)

]
. (2.4.62)

We solve this optimization easily and find

λ ≥ 1

16(−c+
√
c2 + 4)

+
c

2
. (2.4.63)

We check that this last quantity is positive for any c ∈ (c∗, 0) with

c∗ = − 1

4
√

17
. (2.4.64)

From there, an obvious variant of the reasoning of Corollary 2.2.1 makes it possible to

conclude.

In the case of µ0 symmetric, the rate λ can be slightly improved. Indeed, we can
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improve estimate (2.2.9) in the following way. Write for ρ0 and ρ1 symmetric

((1− s)x+ sT (x))2 = (1− s)2x2 + s2T (x) + 2s(1− s)xT (x). (2.4.65)

Now, T being odd and the gradient of a convex function, we have T (0) = 0 and

xT (x) ≥ 0. (2.4.66)

Therefore

((1− s)x+ sT (x))2 ≥ (1− s)2x2 + s2T (x). (2.4.67)

We deduce that if s ≤ 1
2

|(1− s)x+ sT (x)| ≤ r =⇒ |x| ≤ 2r, (2.4.68)

and if s ≥ 1
2

|(1− s)x+ sT (x)| ≤ r =⇒ |T (x)| ≤ 2r. (2.4.69)

Therefore

∫
|x|≤r

ρs(dx) ≥ 1s≤1/2

∫
|x|≤2r

ρ0(dx) + 1s≥1/2

∫
|x|≤2r

ρ1(dx) ≥ 1− P2r. (2.4.70)

This bound is better because P2r ≤ 2Pr. Consequently, in the case of µ0 symmetric, the

optimal λ is given by

λ =
1

4
sup
r>0

1

r2
min

(
6r4, 1− P2r

)
+
c

2
. (2.4.71)

Similarly, λ can be lower-bounded by

λ ≥ 1

4
sup
r>0

1

r4
min

(
6r6, r2 − (−c+

√
c2 + 4)

8

)
+
c

2

=
1

2(−c+
√
c2 + 4)

+
c

2
.

(2.4.72)
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This last quantity is positive for any c ∈ (c∗, 0) with

c∗ = − 1√
6
. (2.4.73)

The result follows.

Finally, we end this section by giving the proof of Theorem 2.0.10, which overrides the

assumptions of a fixed center of mass or symmetry. The optimal c∗ obtained is numerically

much smaller than the constant obtained in the previous theorem. Therefore, the value

of our result lies in its proof. We first need two technical lemmas. The first one is proved

in the appendix, the second proof is omitted and follows exactly the proof of Proposition

2.4.5.

Lemma 2.4.8. Let (ρs)0≤s≤1 = (((1−s)Id+sT )#ρ0)0≤s≤1 be a geodesic between ρ0 ∈M4

and a symmetric measure ρ1 ∈M4. Then for all s ∈ [0, 1] and r > 0

∫
|x|≤r

x2ρs(dx) ≥ 1

2
min

(∫
x2ρ0(dx),

∫
x2ρ1(dx)

)
− 8

r2
max

(∫
x4ρ0(dx),

∫
x4ρ1(dx)

)
.

(2.4.74)

Lemma 2.4.9. Let (µt)t≥0 be a solution of (2.0.15) with quartic V . Assume that (µt)t≥0

have finite sixth moments for all times t ≥ 0. Then

inf
t>0

∫
x2µt(dx) ≥ min

(∫
x2µ0(dx),

(
2

−c+
√
c2 + 16

)4
)

(2.4.75)

and

sup
t≥0

∫
x4µt(dx) ≤ max

∫ x4µ0(dx),

(
−c+

√
c2 + 12

2

)2
 . (2.4.76)

Proof of Theorem 2.0.10. As before, tightness is clear. It is enough to show a HWI

inequality with rate λ > 0. We use the notations of the proof of Theorem 2.0.6. In the
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following ρ0 and ρ1 denote respectively µt, t ≥ 0 and µV . Start with (2.4.27)

(GV +GW )′′(u) ≥1

2

∫
V ′′(x+ uθ(x))θ(x)2ρ0(dx)

+
1

2

∫∫
(θ(x)− θ(y))2

(x− y + u(θ(x)− θ(y)))2
ρ0(dx)ρ0(dy)

− 1

ε2

[∫
|x|≥η

ρ0(dx)

]2
.

(2.4.77)

Therefore, denoting ψ(x) = 3x2, plugging V ′′(x + uθ(x)) = ψ(x + uθ(x)) + c and

splitting the integrals according to |x+ uθ(x)| ≤ r, we have

(GV +GW )′′(u) ≥1

2

∫
|x+uθ(x)|≤r

ψ(x+ uθ(x))θ(x)2ρ0(dx) +
3r2

2

∫
|x+uθ(x)|>r

θ(x)2ρ0(dx)

+
1

8r2

∫∫
|x+uθ(x)|≤r
|y+uθ(y)|≤r

(θ(x)− θ(y))2ρ0(dx)ρ0(dy)

+
c

2
W2(ρ0, ρ1)

2 − 1

ε2

∫
|x|≥η

ρ0(dx).

(2.4.78)

We now adapt an idea used in section 4.5 [18] to our specific integrals. Write

∫∫
|x+uθ(x)|≤r|y+uθ(y)|≤r

(θ(x)− θ(y))2ρ0(dx)ρ0(dy) = 2

∫
|x+uθ(x)|≤r

ρ0(dx)

∫
|x+uθ(x)|≤r

θ(x)2ρ0(dx)

− 2

(∫
|x+uθ(x)|≤r

θ(x)ρ0(dx)

)2

.

(2.4.79)

From

 ∫
|x+uθ(x)|≤r

θ(x)ρ0(dx)


2

≤
∫

|x+uθ(x)|≤r

1

1 + 2r2ψ(x+ uθ(x))
ρ0(dx)

×
∫

|x+uθ(x)|≤r

(1 + 2r2ψ(x+ uθ(x)))θ(x)2ρ0(dx)

(2.4.80)
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we derive

(GV +GW )′′(u) ≥ 1

4r2

 ∫
|x+uθ(x)|≤r

[
1− 1

1 + 2r2ψ(x+ uθ(x))

]
ρ0(dx)


×

∫
|x+uθ(x)|≤r

(1 + 2r2ψ(x+ uθ(x)))θ(x)2ρ0(dx)

+
3r2

2

∫
|x+uθ(x)|>r

θ(x)2ρ0(dx) +
c

2
W2(ρ0, ρ1)

2

− 1

ε2

∫
|x|≥η

ρ0(dx).

(2.4.81)

The goal is to lower-bound the term

∫
|x+uθ(x)|≤r

[
1− 1

1 + 2r2ψ(x+ uθ(x))

]
ρ0(dx) =

∫
|x|≤r

2r2x2

1 + 2r2x2
ρu(dx). (2.4.82)

In [18], a similar quantity appears, and the authors prove that it is bounded away from

zero by using the internal energy. In absence of any internal energy, we have to exploit

the logarithmic repulsive interaction to show that ρs - the interpolation between µV and

µt - cannot be concentrated at the origin. This intuition is implemented by looking at

the second order moments.

Set m =
(

2
−c+

√
c2+16

)4
and M =

(
−c+

√
c2+12
2

)2
. By Lemma 2.4.8 (ρ1 = µV is indeed

symmetric), we have

∫
|x|≤r

2r2x2

1 + 2r2x2
ρu(dx) ≥ 2r2

1 + 2r4

[
1

2
m− 8

r2
M

]
. (2.4.83)

Use this estimate and 1 + 2r2ψ(x+ uθ(x)) ≥ 1 to deduce

(GV +GW )′′(u) ≥ λrW2(ρ0, ρ1)
2 − 1

ε2

[∫
|x|≥η

ρ0(dx)

]2
(2.4.84)
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where λr is given by

λr =
c

2
+

1

2
min

(
3r2,

1

1 + 2r4

[
1

2
m− 8

r2
M

])
. (2.4.85)

From this point, follow the end of the proof of Theorem 2.0.6 to conclude

Σ(ρ0)− Σ(ρ1) ≤ W2(ρ0, ρ1)
√
D(ρ0)−

λr
2
W2(ρ0, ρ1)

2. (2.4.86)

We see clearly that supr>0 λr can be made positive for c negative and close enough to

zero. The optimal rate can be lower-bounded by

λ = sup
r>0

λr ≥
c

2
+

1

4
sup

r2≥16M/m

[
1

r4

(
m

2
− 8M

r2

)]
=
c

2
+

m3

13924M2
. (2.4.87)

Numerically, we find that λ > 0 for c > −3.00× 10−9.

2.4.5 Stability for non-confining quartic potentials

The difficulty of the non-confining quartic potential

V (x) = g
x4

4
+
x2

2
, g < 0, (2.4.88)

is twofold: how do we define a solution of (2.0.15) and what are the equilibrium and

stationary measures? Indeed, solutions of (2.0.15) may explode and Assumption 2.4.1

is not satisfied by this kind of potential, so we do not necessarily have the existence of

an equilibrium measure. In [4], authors give insights on how to restart solutions after

explosion time. This approach is different from the idea of Biane and Speicher in section

7.1 [12], where the authors explain how to define bounded solutions of (2.0.15), which

stay around the origin, and exhibit a good candidate for the equilibrium measure. In the

following, we will adopt this last point of view.
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Let (A, τ, (At)t≥0, (St)t≥0) be a filtered non-commutative probability space with a free

Brownian motion (St)t≥0. Denote Aop the algebra A with operation a ·Aop b = b ·A a for

a, b ∈ A. See [11], [10] and [12] for more details on free probability and free stochastic

processes. For all t > 0, denote ρt the density of semicircular distribution of mean zero

and variance t. In those conditions, St has a distribution given by ρt.

ρt(dx) =
2

πt

√
t− x21[−

√
t,
√
t](x)dx, ∀t > 0. (2.4.89)

In the framework of free probabilities, a solution (µt)t≥0 of (2.0.15) can be seen as

the distribution of the free stochastic process (Xt)t≥0, solution of the free stochastic

differential equation 
Xt = X0 + St − 1

2

∫ t

0
V ′(Xt)dt

Law(X0) = µ0

(2.4.90)

We shall denote µt = Law(Xt). We now recall the free Itô formula and the free

Burkholder-Davis-Gundy inequality. For any polynomial ϕ =
∑

n≥0 ϕnX
n, denote for

X ∈ A the element ∂ϕ(X) of A⊗Aop defined by

∂ϕ(X) =
∑
n≥0

ϕn

n−1∑
k=0

Xk ⊗Xn−k−1. (2.4.91)

Introduce the operator ∆t defined by

∆tϕ(x) = 2
d

dx

(∫
R

ϕ(x)− ϕ(y)

x− y
ρt(dy)

)
. (2.4.92)

The free Itô’s formula is then written

ϕ(Xt) = ϕ(X0) +

∫ t

0

∂ϕ(Xs)♯dXs +
1

2

∫ t

0

∆sϕ(Xs)ds, ∀t ≥ 0, (2.4.93)

where
∫ t

0
∂ϕ(Xs)♯dXs denotes the free stochastic integral of the bi-process (∂ϕ(Xs))s≥0

with respect to the free Itô process (Xt)t≥0.
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The free Burkholder-Davis-Gundy inequality states that

∥∥∥∥∫ t

0

Ys♯dSs

∥∥∥∥ ≤ 2
√

2

√∫ t

0

∥Ys∥2ds, ∀t ≥ 0, (2.4.94)

for any free Itô process (Yt)t≥0.

We are now ready to define solutions to (2.4.90), detailing an idea of Biane and

Speicher succinctly presented in [12].

Proposition 2.4.10. Let g ∈
(
− 1

81+36
√
5
, 0
)
and µ0 be an initial with support included

in (−m(g),m(g)), with m(g) given by

m(g) =

√
− 1

3g
− 4√
−g
− 3. (2.4.95)

Then the process (Xt)t≥0 defined by (2.4.90) exists for all times and the support of µt

remains in a set of strict convexity of V . More precisely, if for some m ∈ [0,m(g))

supp(µ0) ⊂ [−m,m] (2.4.96)

then for all t ≥ 0

supp(µt) ⊂

[
−

√
m2 +

4√
−g

+ 3,

√
m2 +

4√
−g

+ 3

]
, (2.4.97)

and

inf
x∈supp(µt)

V ′′(x) = 1 + 3g

(
m2 +

4√
−g

+ 3

)
> 0. (2.4.98)

Proof. Let ε ∈ (0, 1). Set h =
√

1
−3g

and M =
√

1− εh. With those notations

inf
|x|≤M

V ′′(x) = 1 + 3gM2 = ε > 0. (2.4.99)
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The idea of the proof is to show that the stopping time

T = inf{t ≥ 0 : ∥Xt∥ > M}

is almost surely infinite.

Fix δ > 0. We apply free Itô’s formula to eδtG(Xt) with G(x) = x2:

eδtX2
t = X2

0 +

∫ t

0

eδsδX2
sds+

∫ t

0

eδs1Ads+

∫ t

0

eδs (Xs ⊗ 1A + 1A ⊗Xs) #dSs

− 1

2

∫ t

0

eδsXsV
′(Xs)ds,

(2.4.100)

where we used the fact that ∆sG(x) = 2, x ∈ R. Noticing that for s < T

δX2
s−

1

2
XsV

′(Xs) =
X2

s

2
[2δ−gX2

s−1] ≤ X2
s

2
[2δ−gM2−1] =

X2
s

2

(
2δ − 2 + ε

3

)
(2.4.101)

as self-adjoint operators, because ∥Xs∥ ≤ M (notice that −g > 0). Therefore, with the

choice δ = 2+ε
6

, we have

δX2
s −

1

2
XsV

′(Xs) ≤ 0. (2.4.102)

Observing that ∥Xs ⊗ 1A + 1A ⊗Xs∥ ≤ 2∥Xs∥ ≤ 2M for s < T , we deduce by using

free Burkholder-Davis-Gundy inequality that

eδt∥X2
t ∥ ≤ ∥X2

0∥+ 4
√

2M

√
e2δt − 1

2δ
+
eδt − 1

δ
. (2.4.103)

Consequently, for all t < T

∥Xt∥2 ≤ m2 + 4M

√
6

2 + ε
+

6

2 + ε
= m2 + 4

√
6

√
1− ε
2 + ε

h+
6

2 + ε
. (2.4.104)

If the parameters m,h and ε satisfy

m2 + 4
√

6

√
1− ε
2 + ε

h+
6

2 + ε
< M = (1− ε)h2, (2.4.105)
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then we will have, by the continuity of the norm of the free stochastic integral (Xt)t≥0,

that T =∞ and the support of the distribution of Xt will be bounded.

Condition (2.4.105) is satisfied for m and −g small enough. Indeed, we have that

(1− ε)h2 − 4
√

6

√
1− ε
2 + ε

h− 6

2 + ε
> 0 (2.4.106)

as soon as

h >
2
√

6 +
√

30√
(1− ε)(2 + ε)

. (2.4.107)

We are interested in finding the smallest g∗ such that we can define solutions if the

initial support is included in a small neighborhood of the origin. To achieve this, we

minimize the right hand-side of (2.4.107) by taking ε = 0. Therefore, if

− 1

81 + 36
√

5
< g < 0 (2.4.108)

and the initial support satisfies

m2 < h2 − 4
√

3h− 3 = − 1

3g
− 4√
−g
− 3, (2.4.109)

then T =∞ and for all t ≥ 0

∥Xt∥2 ≤ m2 +
4√
−g

+ 3. (2.4.110)

This proves (2.4.97). Finally, we have for all t ≥ 0

inf
x∈supp(µt)

V ′′(x) = 1 + 3g

(
m2 +

4√
−g

+ 3

)
= −3g

(
h2 −m2 − 4√

−g
− 3

)
> 0.

(2.4.111)

This proves (2.4.98).

An immediate consequence is the following lemma.

Lemma 2.4.11. Let g ∈
(
− 1

81+36
√
5
, 0
)
and m < m(g). The distributions (µt)t≥0 asso-

57



ciated with the process (Xt)t≥0 have a lower-bounded entropy

inf
t≥0

Σ(µt) > −∞. (2.4.112)

Moreover, the entropy dissipation is still given by D

d

dt
Σ(µt) = −D(µt). (2.4.113)

Proof. The non-confining potential V (2.4.88) does not satisfy the growth assumption on

the whole real line (2.4.5) of Theorem 3.1 and Proposition 6.1 [12]. However, the support

of the solution being bounded, it can be still satisfied locally. More precisely, there exists

a modified potential V satisfying


V ∈ C2(R)

V (x) = V (x), for x ∈ [−M − 1,M + 1]

V (x) ≥ x4, for x ∈ [−M − 2,M + 2].

(2.4.114)

V will therefore satisfy the growth assumption of Theorem 3.1 [12]. (µt)t≥0 satisfies the

Fokker-Planck equation

∂tµt = ∂x

[
µt

(
1

2
V

′ −Hµt

)]
. (2.4.115)

The entropy and dissipation of µt, t ≥ 0 are given respectively by

Σ(µt) =
1

2

∫
R
V (x)µt(dx)− 1

2

∫
R×R

log |x− y|µt(dx)µt(dy)

=
1

2

∫
R
V (x)µt(dx)− 1

2

∫
R×R

log |x− y|µt(dx)µt(dy)

(2.4.116)

and

D(µt) =

∫
R

∣∣∣∣12V ′
(x)−Hµ(x)

∣∣∣∣2 µt(dx). (2.4.117)

The result follows from Theorem 3.1 and Proposition 6.1 [12] applied to V .
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We are now ready to prove Theorem 2.0.11.

Proof of Theorem 2.0.11. The measures (µt)t≥0 have uniformly bounded moments, thanks

to the boundedness of the support. Therefore, we have tightness with respect to the

Wasserstein distance. Let µ∞ be a limit point. According to Lemma 2.4.11, this limit

point is a stationary solution.

Set R =
√
m2 + 4√

−g
+ 3. Let ρ0, ρ1 ∈ M2 with support included in [−R,R]. Let T

be the optimal transportation map from ρ0 to ρ1. We see that for all s ∈ [0, 1]

(1− s)x+ sT (x) ∈ [−R,R], ∀x ∈ supp(ρ0). (2.4.118)

Using the fact inf
|x|≤R

V ′′(x) ≥ 2λ > 0, we deduce

1

2

∫
V ′′((1− s)x+ sT (x))(T (x)− x)2ρ0(dx) ≥ λW2(ρ0, ρ1)

2, ∀s ∈ [0, 1]. (2.4.119)

Following a similar argument to the Remark 2.4.3, we derive the HWI inequality

Σ(ρ0)− Σ(ρ1) ≤
√
D(ρ0)W2(ρ0, ρ1)−

λ

2
W2(ρ0, ρ1)

2. (2.4.120)

Similarly to Corollary 2.2.1, we deduce exponential stability. To see that µ∞ is a local

minimizer, take ρ0 = µ∞ and ρ1 = µ with support included in [−R,R]. µ∞ being a

stationary measure, the HWI inequality gives

Σ(µ∞)− Σ(µ) ≤ −λ
2
W2(µ∞, µ)2 ≤ 0. (2.4.121)

Remark 2.4.12. This result can be slightly improved by allowing g < g∗. Indeed, we did

not exploit the logarithmic energy as we did in Theorem 2.0.9. More precisely, we do not

need infx∈supp(µt) V
′′(x) > 0 for all t ≥ 0 to deduce (2.4.120). For solutions with a fixed
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center of mass and with a symmetric initial data, it is enough to ensure that

inf
x∈supp(µt)

V ′′(x) +
1

4 maxx∈supp(µt) |x|2
> 0, ∀t ≥ 0. (2.4.122)
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Appendix

2.A Proof of Lemma 2.4.4

Proof of Lemma 2.4.4. Let ϕ ∈ C∞(R, [0, 1]) such that

1. ϕ(0) = 1 and ϕ(1) = 0,

2. ϕ(k)(0) = ϕ(k)(1) = 0 for k ≥ 1.

Set |ϕ(k)|∞ = supx∈[0,1] |ϕ(k)(x)|. Define for K ≥ 1:

ηK(x) =


1 if |x| ≤ K,

ϕ(|x| −K) if K ≤ |x| ≤ K + 1,

0 if |x| > K + 1.

We check easily that ηK ∈ C∞(R, [0, 1]) and that for all k ≥ 1,

|η(k)K |∞ ≤ Ck|ϕ(k)|∞

for some Ck > 0.
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Setting f : x 7→ |x|p and taking fK : x 7→ ηK(x)f(x) in (2.4.2), gives

∫
R
fK(x)µt(dx)−

∫
R
fK(x)µ0(dx)︸ ︷︷ ︸

≡A(K)

=
1

2

∫ t

0

∫∫
R×R

f ′
K(x)− f ′

K(y)

x− y
µs(dx)µs(dy)︸ ︷︷ ︸

≡B(s,K)

ds

−
∫ t

0

∫
R
V ′(x)f ′

K(x)µs(dx)︸ ︷︷ ︸
≡C(s,K)

ds.

(2.A.1)

Using that |fK | ≤ |f | and the dominated convergence theorem, we see that the left-hand

side A(K) converges towards
∫
R |x|

pµt(dx)−
∫
R |x|

pµ0(dx) when K → +∞.

Likewise, C(s,K) =
∫
R V

′(x) · [|x|pη′K(x) + p|x|p−2ηK(x)x]µs(dx) converges towards

C(s,∞) =

∫
R
pV ′(x) · x|x|p−2µs(dx).

Moreover

C(s,K) ≤ max(|ϕ′|∞, |ϕ|∞)

∫
R
|V ′(x)|(|x|p + p|x|p−1)µs(dx) ∈ L1([0, t]).

According to the dominated convergence theorem

∫ t

0

C(s,K)ds
K→+∞−−−−→

∫ t

0

∫
R
V ′(x) · px|x|p−2µs(dx). (2.A.2)

We treat B(s,K) similarly

|(ηKf)′(x)− (ηKf)′(y)) · (x− y)|
|x− y|2

≤|ϕ′′|∞|f(y)|

+ |ϕ|∞
|f ′(x)− f ′(y)|
|x− y|

+ |ϕ′|∞
[
|f ′(y)|+ |f(x)− f(y)|

|x− y|

]
.

(2.A.3)

We check that for f(x) = |x|p and
∫
|x|pµt(dx) < +∞, the right-hand side is inte-
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grable. Therefore, B(s,K) converges towards

B(s,∞) =

∫∫
R×R

f ′(x)− f ′(y)

x− y
µs(dx)µs(dy).

Using (2.A.3), we find an integrable function in L1([0, t]) dominating
∫∫

RB(s,K)µs(dx),

and thereupon

∫ t

0

B(s,K)ds
K→+∞−−−−→

∫ t

0

∫∫
R×R

f ′(x)− f ′(y)

x− y
µs(dx)µs(dy)ds. (2.A.4)

Finally, we conclude from (2.A.1), (2.A.2) and (2.A.4), that equation (2.4.2) is satisfied

for f(x) = |x|p.

2.B Proof of Lemma 2.4.8

Proof of Lemma 2.4.8. Write

∫
|x|≤r

x2ρs(dx) =

∫
x2ρs(dx)−

∫
|x|>r

x2ρs(dx). (2.B.1)

Treat each term independently. First

∫
x2ρs(dx) =

∫
((1− s)x+ sT (x))2ρ0(dx)

≥ 1

2
min

(∫
x2ρ0(dx),

∫
x2ρ1(dx)

)
+ 2s(1− s)

∫
xT (x)ρ0(dx).

(2.B.2)

Introduce q the median of ρ0 satisfying Fρ0(q) = 1
2
. We see immediately by the assumption

on ρ1 that T (q) = 0. Therefore, T being the gradient of a convex function

∫
xT (x)ρ0(dx) =

∫
(x− q)(T (x)− T (q))ρ0(dx) + q

∫
T (x)ρ0(dx)

≥ q

∫
xρ1(dx) = 0.

(2.B.3)
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Consequently ∫
x2ρs(dx) ≥ 1

2
min

(∫
x2ρ0(dx),

∫
x2ρ1(dx)

)
. (2.B.4)

For the second term, write

∫
|x|>r

x2ρs(dx) ≤ 1

r2

∫
x4ρs(dx)

≤ 8

r2

∫ (
|x|+ |T (x)|

2

)4

ρ0(dx)

≤ 8

r2
max

(∫
x4ρ0(dx),

∫
x4ρ1(dx)

)
.

(2.B.5)
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Chapter 3

Well-posedness of the supercooled

Stefan problem with oscillatory

initial conditions

Consider the one-phase one-dimensional supercooled Stefan problem for the heat equation



∂tu(t, x) = 1
2
∂xxu(t, x), x > Λt, t > 0,

u(0, x) = f(x), x ≥ 0 and u(t,Λt) = 0, t > 0,

Λ̇t = 1
2
∂xu(t, x+)|x=Λt , t ≥ 0,

Λ0 = 0

(3.0.1)

with a non-negative initial condition f . The unknowns are u, the negative of the tem-

perature of a liquid relative to its equilibrium freezing point, as a function of time and

space, and the free boundary Λ, which encodes the location of a liquid-solid frontier

over time. The temperature is required to solve the heat equation with Dirichlet-type

boundary conditions, while the free boundary moves at a speed proportional to the space

derivative of the temperature at said boundary (“Stefan condition”). To ease exposition,

we normalize the latent heat coefficient, usually denoted by α, to 1.
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It turns out that, for generic initial conditions, the frontier Λ can exhibit jump dis-

continuities (see, e.g., [58, Theorem 1.1]). A way to circumvent this issue is to restate

(3.0.1) in a probabilistic form, which allows the definition of global solutions, even in the

presence of jump discontinuities. To wit, let X0− be a non-negative random variable with

a density f , and let B be an independent standard Brownian motion. The probabilistic

reformulation of (3.0.1), first introduced in [25, 26] for a variant of it, is phrased in terms

of the McKean-Vlasov problem


Xt = X0− +Bt − Λt, t ≥ 0,

τ := inf{t ≥ 0 : Xt ≤ 0},

Λt = P (τ ≤ t) , t ≥ 0,

(3.0.2)

with the unknowns X = (Xt)t≥0 and Λ = (Λt)t≥0. When f belongs to the Sobolev space

W 1
2 ([0,∞)) and f(0) = 0, a solution (X,Λ) of (3.0.2) such that Λ̇ ∈ L2([0, T ]) for some

T ∈ (0,∞) gives rise to a solution u ∈ W 1,2
2 ({(t, x) ∈ [0, T ]× [0,∞) : x ≥ Λt}) of (3.0.1)

on [0, T ] by taking u(t, x) dx as the law of (Xt + Λt)1{τ>t} on (Λt,∞), for t ∈ [0, T ]

(cf. [91, proof of Proposition 4.2(b)]).

The probabilistic formulation (3.0.2) brings out the necessary presence of jump discon-

tinuities in the frontier Λ for certain initial data X0− (for example, those with E [X0−] <

1/2, see [58, Theorem 1.1]), as well as the non-uniqueness of the jump sizes Xt− −Xt :=

lims↑tXs − Xt = Λt − Λt− at the instants of discontinuity. When extending solutions

beyond a discontinuity, one must decide how to choose the jump size, which has led to

the introduction of the condition

Xt− −Xt = Λt − Λt− = inf
{
x > 0 : P (τ ≥ t, Xt− ∈ (0, x]) < x

}
, t ≥ 0. (3.0.3)

Solutions of (3.0.2) satisfying (3.0.3) are called physical. It has been shown that (3.0.3)

selects the minimal jump sizes a right-continuous solution Λ with left limits can have
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(see [58, Proposition 1.2]). The global existence of physical solutions is known under

natural assumptions on the initial data, see [24], where it is proved under the very mild

assumption E [X0−] < ∞, as well as earlier results in [25], [91], [92]. On the other hand,

it has been established in [27] that if X0− possesses a density f on [0,∞) that is bounded

and changes monotonicity finitely often on compacts intervals, then the physical solution

is unique.

This paper develops new arguments that demonstrate uniqueness for oscillatory initial

data, which in particular do not fulfill the monotonicity change assumption of [27], though

densities fulfilling the latter assumption are also captured by our main theorem. Oscil-

latory initial conditions arise frequently when one investigates continuum limits of inter-

acting particle systems. For example, [29, Remark 1.10] and [75, Theorem 1.2] feature

initial conditions given by the trajectories of a Brownian motion and a (reparameterized)

Brownian bridge, respectively. We also refer to [78, Theorem 4], [33, Theorem 5.4], [20,

Theorem 4] where the initial conditions even are distributions rather than functions in

general.

Consider the question of short time uniqueness for (3.0.2)–(3.0.3), assume that X0−

has a density f , and let F be the cumulative distribution function (CDF) of X0−. If

ess lim supx↓0 f(x) < 1, there is no jump discontinuity at time 0 (i.e., Λ0 = 0 =: Λ0−

and X0 = X0−) for any physical solution, and it is straightforward to prove short time

uniqueness. If ess lim infx↓0 f(x) > 1, any physical solution must have an initial jump of

the size Λ0 = inf{x > 0 : F (x) < x} > 0, and one can focus on the problem started

from X0 = X0− − Λ0, with the density f(x + Λ0). This new density satisfying neces-

sarily ess lim infx↓0 f(x) ≤ 1, we infer that ultimately one needs to investigate the case

ess lim infx↓0 f(x) ≤ 1 ≤ ess lim supx↓0 f(x).

In [27, Proposition 5.2], short time uniqueness is shown using a contraction argument,

based on the fact that for densities satisfying their monotonicity change assumption, there

exists a non-decreasing function h : (0,∞) → (0,∞), with h(0+) = 0, such that for all
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x > 0 sufficiently small:

f(x) ≤ 1− h(x). (3.0.4)

The key contribution of this paper is the proof of short time uniqueness for densities

oscillating down from 1, and thus violating (3.0.4). Instead, we introduce an averaging

condition: There exists a non-decreasing function g : (0,∞)→ (0,∞) such that

f ≤ 1,

∫ ∞

0

x f(x) dx <∞, (3.0.5a)

∃λ0 > 0 ∀λ ∈ [0, λ0) ∀µ ∈ [0, 1] :

∫ µ+1

µ

f(λx) dx ≤ 1− g
(
λ(µ+ 1)

)
. (3.0.5b)

Notice that (3.0.4) implies

∫ µ+1

µ

f(λx) dx ≤ 1−
∫ µ+1

µ

h(λx) dx

≤ 1−
∫ µ+1

(µ+1)/2

h(λx) dx

≤ 1− h(λ(µ+ 1)/2)

2
,

(3.0.6)

i.e., (3.0.5b) with g(x) := h(x/2)/2.

We are now ready to state our main result.

Theorem 3.0.1. Let X0− ≥ 0 possess a density f that satisfies condition (3.0.5) with a

continuous function g. Then, the physical solution (X,Λ) of (3.0.2) started from X0− is

unique.

Remark 3.0.2. Our proof of Theorem 3.0.1 (see Section 3.1) shows that the solution

(X,Λ) of (3.0.2) started from X0− is locally unique even if one weakens the physicality

assumption to Λ0 = 0.

In the second part of the article, we provide evidence that condition (3.0.5) is natural

and non-restrictive, by establishing that it is fulfilled by many oscillating densities, like

ones given by sample paths of certain stochastic processes.
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Corollary 3.0.3. For almost every fixed sample path of a standard Brownian motion

(Wx)x≥0, the physical solution (X,Λ) of (3.0.2) started from X0− ≥ 0 is unique if X0−

has a density f obeying (3.0.5a) and such that

f(x) =
(
1 +Wx −

√
2x| log | log x||

)
+
∧ 1, x ∈ [0, 1]. (3.0.7)

We also consider deterministically constructed oscillating densities, including the ones

in the next corollary.

Corollary 3.0.4. For α > 0, let X0− ≥ 0 be a random variable with the density

f(x) =
1

2

(
1 + sin

1

xα

)
, x ∈ (0, a], (3.0.8)

where a ∈ (0,∞) is defined by
∫ a

0
f(x) dx = 1. Then, the physical solution (X,Λ) of

(3.0.2) started from X0− is unique.

Remark 3.0.5. We note that for the densities f of Corollary 3.0.4, the decreasing se-

quence of solutions to f(x) = 1 approaches 0 at an arbitrarily high polynomial rate n−1/α.

Such oscillatory densities are termed “pathological” in [79, Figure 3.1] due to the difficulty

of showing uniqueness for them.

The last part the paper exhibits a situation in which it is possible to go beyond

condition (3.0.5) and to establish uniqueness for the supercooled Stefan problem via

complementary arguments.

Proposition 3.0.6. Fix a T ∈ (0,∞), and let X0− ≥ 0 be a random variable with the

density

f(x) =


α1, x ∈

⋃
n≥1

[a2n, a2n−1),

α2, x ∈
⋃
n≥1

[a2n+1, a2n),

(3.0.9)

where 0 < α1 < 1 < α2, a2n−1 = rn−1a1, a2n = prn−1a1, and r = pq, p, q ∈ (0, 1). Then,
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for any α2 > 1 close enough to 1, the physical solution (X,Λ) of (3.0.2) started from X0−

is unique on [0, T ].

Remark 3.0.7. In contrast to the main theorem (Theorem 3.0.1), Proposition 3.0.6 is a

local uniqueness result. In particular, we were unable to verify the monotonicity change

assumption of [27] at T .

The rest of the article is structured as follows. In Section 3.1, we introduce notation

and prove Theorem 3.0.1. In Subsection 3.2.1, we verify, using functional local laws of

the iterated logarithm, that condition (3.0.5) is satisfied by many densities obtained from

sample paths of suitable stochastic

processes. In Subsection 3.2.2, we consider oscillating densities constructed from peri-

odic functions. In particular, we deduce Corollaries 3.0.3, 3.0.4 from Theorem 3.0.1 in

Subsections 3.2.1, 3.2.2, respectively. Finally, Section 3.3 is devoted to showing Proposi-

tion 3.0.6.

This chapter is based on [90].

3.1 Proof of Theorem 3.0.1

Throughout the section, f denotes a density as in Theorem 3.0.1, and we write F for the

associated CDF. We also define the continuous strictly increasing function

g̃ : [0,∞)→ [0,∞), x 7→ x g(x) (3.1.1)

and set

ψ(λ, µ) =

∫ µ+1

µ

f(λx) dx, λ, µ ≥ 0. (3.1.2)

Let (X,Λ) be an arbitrary physical solution of (3.0.2). By [24, Proposition 2.3], there

exists a minimal solution (X,Λ) of (3.0.2), namely the unique solution of (3.0.2) satisfying

Λt ≤ Λ̃t, t ≥ 0, (3.1.3)
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for any solution (X̃, Λ̃) of (3.0.2). The physicality of (X,Λ) is ensured by [24, Theorem

6.5]. We further introduce (Yt)t≥0, (Zt)t≥0 given respectively by

Yt = sup
0≤s≤t

(−Bs + Λs), t ≥ 0, (3.1.4)

Zt = sup
0≤s≤t

(−Bs + Λs), t ≥ 0. (3.1.5)

In these terms, the frontiers solve

Λt = P
(

inf
0≤s≤t

(X0− +Bs − Λs) ≤ 0
)

= E [F (Yt)] , t ≥ 0, (3.1.6)

Λt = E [F (Zt)] , t ≥ 0. (3.1.7)

Our starting point is the following continuous upper bound on the frontier Λ.

Lemma 3.1.1. There exist a T > 0 and a strictly increasing continuous function (χt)t≥0,

with χ0 = 0, such that

Λt ≤ χt, t ∈ [0, T ]. (3.1.8)

Proof. For t ≥ 0, we estimate

Λt = P
(
X0− ≤ sup

0≤s≤t
(−Bs + Λs)

)
≤ P (X0− ≤ Λt) + P

(
{Λt < X0−} ∩

{
X0− ≤ sup

0≤s≤t
(−Bs + Λs)

})
.

(3.1.9)

In view of the upper bound sup0≤s≤t(−Bs + Λs) ≤ sup0≤s≤t(−Bs) + Λt, we find for all

t ≥ 0 that

Λt − F (Λt) ≤ P
(
{Λt < X0−} ∩ {X0− − Λt ≤

√
t |N |}

)
=

∫ ∞

0

P(x ≤
√
t |N |)P(X0− − Λt ∈ dx)

≤
√

2t/π,

(3.1.10)

where N is a standard normal random variable, and we have used f ≤ 1 and E [|N |] =
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√
2/π.

To conclude we apply (3.0.5b) to obtain

F (λ)

λ
=

∫ 1

0

f(λx) dx ≤ 1− g(λ), λ ∈ (0, λ0). (3.1.11)

Since Λt is right-continuous with Λ0 = 0, there exists a T > 0 such that Λt < λ0, t ∈ [0, T ].

Putting this together with (3.1.11) and (3.1.10) we get

g̃(Λt) ≤ Λt − F (Λt) ≤ E [|N |]
√
t, t ∈ [0, T ]. (3.1.12)

The proof is completed by inferring

Λt ≤ g̃−1(E [|N |]
√
t) =: χt, t ∈ [0, T ], (3.1.13)

with the continuous g̃−1 satisfying g̃−1(0) = 0.

We also need the next lemma.

Lemma 3.1.2. Let (νt)t≥0 be a strictly increasing continuous function, with ν0 = 0. Then,

there exists a positive function φ(t, b) of t > 0 and b > 0 so that

P (t, b) := P
(

sup
0≤s≤t

(−Bs + νs) ≤ b
)
≥ φ(t, b). (3.1.14)

Proof. Fix t > 0 and b > 0. If νt ≤ b/2, then

P (t, b) ≥ P
(

sup
0≤s≤t

(−Bs) ≤ b− νt
)
. (3.1.15)

Otherwise, νt > b/2 and τ := τ(b) := ν−1(b/2) < t. Moreover, for any τ ′ ∈ (0, τ ],

P (t, b) = P
({

sup
0≤s≤τ ′

(−Bs + νs) ≤ b
}
∩
{

sup
τ ′<s≤t

(−Bs + νs) ≤ b
})

≥ P
({

sup
0≤s≤τ ′

(−Bs) ≤
b

2

}
∩
{

sup
τ ′<s≤t

(−Bs) ≤ b− νt
})

.

(3.1.16)
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We conclude by setting

φ(t, b) = P
({

sup
0≤s≤τ(b)∧(νt−b/2)+

(−Bs) ≤
b

2

}
∩
{

sup
τ(b)∧(νt−b/2)+<s≤t

(−Bs) ≤ b− νt
})

.

(3.1.17)

Clearly, φ is positive on (0,∞)2.

The following proposition is the key ingredient in our proof of Theorem 3.0.1.

Proposition 3.1.3. There exists a function Φ: (0, T ]× (0, λ0)→ (0,∞) such that

E [F (Yt + λ)− F (Yt)] ≤ (1− Φ(t, λ))λ, (t, λ) ∈ (0, T ]× (0, λ0). (3.1.18)

Proof. Let (t, λ) ∈ (0, T ]× (0, λ0). Then,

E [F (Yt + λ)− F (Yt)] = E
[
F

(
λ

(
Yt
λ

+ 1

))
− F

(
λ
Yt
λ

)]
= E

[
ψ

(
λ,
Yt
λ

)]
λ.

(3.1.19)

Since λ ∈ (0, λ0), condition (3.0.5b) yields

1{Yt≤λ} ψ

(
λ,
Yt
λ

)
≤ 1{Yt≤λ} (1− g(Yt + λ)). (3.1.20)

In view of ψ ≤ supx≥0 f(x) ≤ 1,

E [F (Yt + λ)− F (Yt)]

λ
≤ E

[
1{Yt≤λ} ψ

(
λ,
Yt
λ

)]
+ P (Yt > λ)

≤ E
[
1{Yt≤λ}(1− g(Yt + λ))

]
+ P (Yt > λ)

= 1− E
[
1{Yt≤λ} g(Yt + λ)

]
.

(3.1.21)

Finally, we use sup0≤s≤t(−Bs) ≤ Yt = sup0≤s≤t(−Bs + Λs) and Λt ≤ χt, t ∈ [0, T ]:

E
[
1{Yt≤λ} g(Yt + λ)

]
≥ g(λ)P(Yt ≤ λ)

≥ g(λ)P
(

sup
0≤s≤t

(−Bs + χs) ≤ λ
)
.

(3.1.22)
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Thus, thanks to Lemma 3.1.2,

E
[
1{Yt≤λ} g(Yt + λ)

]
≥ g(λ)φ(t, λ) =: Φ(t, λ). (3.1.23)

Inserting this into (3.1.21) we obtain (3.1.18).

We are now ready for the proof of Theorem 3.0.1.

Proof of Theorem 3.0.1. To start, we fix a λ ∈ (0, λ0) and decrease T > 0 to

ensure Λt − Λt ≤ λ, t ∈ [0, T ], relying on right-continuity. For a λ′ ∈ (0, λ], suppose

{t ∈ [0, T ] : Λt − Λt ≥ λ′} ̸= ∅ and consider tλ′ := inf{t ∈ [0, T ] : Λt − Λt ≥ λ′}. Then,

tλ′ > 0 by right-continuity, and

0 < λ′ ≤ Λtλ′
− Λtλ′

= sup
0≤t≤tλ′

(Λt − Λt) ≤ λ < λ0. (3.1.24)

Therefore, we have

Ztλ′
= sup

0≤s≤tλ′

(−Bs + Λs) ≤ Ytλ′ + Λtλ′
− Λtλ′

. (3.1.25)

Thus, combining (3.1.6), (3.1.7) and Proposition 3.1.3 we infer

Λtλ′
− Λtλ′

= E[F (Ztλ′
)− F (Ytλ′ )]

≤ E[F (Ytλ′ + Λtλ′
− Λtλ′

)− F (Ytλ′ )]

≤ (1− Φ(tλ′ ,Λtλ′
− Λtλ′

)) · (Λtλ′
− Λtλ′

),

(3.1.26)

where Φ(tλ′ ,Λtλ′
− Λtλ′

) > 0. Hence, Λtλ′
− Λtλ′

= 0, contradicting (3.1.24). We readily

conclude that {t ∈ [0, T ] : Λt −Λt ≥ λ′} = ∅, and since λ′ ∈ (0, λ] was arbitrary, Λt ≤ Λt,

t ∈ [0, T ]. Due to the minimality of Λ, it must hold Λt = Λt, t ∈ [0, T ].

To derive global uniqueness, we let

T ′ := inf{t ≥ T : Λt ̸= Λt} ∈ [T,∞] (3.1.27)
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and suppose that T ′ <∞. By the definition of T ′,

XT ′− = X0− +BT ′ − ΛT ′− = X0− +BT ′ − ΛT ′− = XT ′− (3.1.28)

and 1{τ≥T ′} = 1{τ≥T ′}, so that 1{τ≥T ′}XT ′− = 1{τ≥T ′}XT ′−. Moreover, for all 0 < a < b,

P
(
1{τ≥T ′}XT ′− ∈ [a, b]

)
= P

(
τ ≥ T ′, XT ′− ∈ [a, b]

)
≤ P(XT ′− ∈ [a, b]). (3.1.29)

Thus, the right essential limit superior of the density of 1{τ≥T ′}XT ′− = 1{τ≥T ′}XT ′− at 0

is at most that of XT ′− = XT ′−, namely E[f(−BT ′ + ΛT ′−)] = E[f(−BT ′ + ΛT ′−)]. Since

f ≤ 1, and f ≡ 0 on (−∞, 0),

E[f(−BT ′ + ΛT ′−)] = E[f(−BT ′ + ΛT ′−)] < 1. (3.1.30)

Consequently, the condition (3.0.4) is satisfied at T ′− and we get Λ ≡ Λ on a non-trivial

interval [T ′, T ′ + s] by repeating [27, proof of Proposition 5.2]. (Note that the condition

(3.0.4) permits us to apply [27, Lemma 5.1].) This is the desired contradiction.

3.2 Analysis of specific oscillatory initial conditions

3.2.1 Initial conditions constructed from stochastic processes

In the present subsection we illustrate Theorem 3.0.1 on initial conditions obtained from

sample paths of stochastic processes. Concretely, we consider initial densities

f(x) =


(1 + Sx − κx)+ ∧ 1, x ∈ [0, 1],

f0(x), x > 1,

(3.2.1)

where (Sx)x≥0 is a stochastic process starting at zero, (κx)x≥0 is a function with κ0 =

0, and the (random) extension f0 : (1,∞) → [0, 1] ensures that
∫∞
0
f(x) dx = 1 and
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∫∞
0
x f(x) dx <∞.

Our interest lies in processes S and functions κ such that, almost surely, f violates

the local monotonicity condition (3.0.4) but satisfies condition (3.0.5). Clearly, condition

(3.0.4) is violated if Sx ≥ κx for a sequence of x’s converging to 0, that is,

lim sup
x↓0

Sx

κx
≥ 1. (3.2.2)

As a guiding example, take S to be a standard Brownian motion and κx =
√

2x| log | log x||.

Due to Chung’s law of the iterated logarithm (LIL), the resulting f violates condition

(3.0.4) almost surely. On the other hand, using the local Strassen’s LIL of [105], [37] we

prove below that condition (3.0.5) is satisfied almost surely. This result extends to other

centered continuous Gaussian processes admitting a local functional LIL as follows.

Let (Sx)x∈[0,1] be a centered continuous Gaussian process with S0 = 0 and a covariance

function Γ(x, y) = E [SxSy] continuous on [0, 1]2 and non-degenerate on (0, 1]2. We write

H(Γ) for the reproducing kernel Hilbert space associated with Γ. Recall that H(Γ) is

defined as the completion of the space of finite linear combinations of {Γ(x, ·)}x∈[0,1] under

the norm induced by the inner product ⟨Γ(x, ·),Γ(y, ·)⟩ := Γ(x, y). Elements ϕ ∈ H(Γ)

obey ϕ(x) = ⟨ϕ,Γ(x, ·)⟩ and are continuous functions. Therefore, H(Γ) is a subset of the

Banach space C([0, 1]). Moreover, the unit ball

K = {ϕ ∈ H(Γ) : ⟨ϕ, ϕ⟩ ≤ 1} (3.2.3)

is compact in C([0, 1]) (see, e.g., [94, Lemma 3]). For technical reasons, we assume

throughout that the process S has the scaling property

(Srx)x∈[0,1]
d
= (
√
r
α2Sx)x∈[0,1], r ∈ (0, 1], (3.2.4)
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for some α2 > 0. Under (3.2.4), there exists an α1 > 0 such that

γ(x) := Γ(x, x) = α1x
α2 , x ∈ [0, 1]. (3.2.5)

For simplicity, we take α1 = 1, i.e., E [S2
1 ] = 1.

We say that S satisfies a local functional LIL if the following assertion holds for a

β ∈ (0,∞).

Assertion. Almost surely, the set

{(ξrx)x∈[0,1]}r∈(0,1] :=

{(
Srx

β
√
γ(r) | log | log r||

)
x∈[0,1]

}
r∈(0,1]

(3.2.6)

is relatively compact in C([0, 1]), and the set of its limit points as r ↓ 0 is given by K.

In particular, for every continuous functional I : C([0, 1])→ R we have

lim sup
r↓0

I(ξr) = sup
ϕ∈K
I(ϕ) almost surely. (3.2.7)

A local functional LIL has been established in the case of a fractional Brownian

motion with Hurst exponent H ∈ (0, 1), for which Γ(x, y) = 1
2
(x2H +y2H−|y−x|2H) and

γ(x) = x2H (see [85, Example 4.35]). Further, by taking I(ϕ) = ϕ1 one derives the usual

LIL, so that the density f in (3.2.1), with κx := β
√
γ(x) | log | log x||, violates condition

(3.0.4) almost surely. On the other hand, we obtain the next proposition, by observing

that ψ(λ, µ) can be estimated in terms of ξλ.

Proposition 3.2.1. Suppose that S satisfies a local functional LIL. Then, almost surely,

the density f in (3.2.1), with κx := β
√
γ(x) | log | log x||, adheres to condition (3.0.5).

We start the proof of Proposition 3.2.1 with a technical lemma.

Lemma 3.2.2. In the context of Proposition 3.2.1

(i) limλ↓0 supµ∈[0,1]
∫ µ+1

2
µ
2

∣∣∣ κ2λx

κλ(µ+1)

√
γ(x)
−
√

2α2

(µ+1)α2

∣∣∣2 dx = 0.
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(ii) There exists an η > 0 such that

lim sup
λ↓0

sup
µ∈[0,1]

∫ µ+1
2

µ
2

|ξλx | −
√
γ(x) dx ≤ −η. (3.2.8)

(iii) lim supλ↓0
∫ 1

0

∣∣|ξλx | −√γ(x)
∣∣2 dx ≤ 2.

Proof of Lemma 3.2.2. For all small enough λ > 0, all µ ∈ [0, 1], and all x ∈ lI01,

∣∣∣∣ κ2λx

κλ(µ+1)

√
γ(x)

−

√
2α2

(µ+ 1)α2

∣∣∣∣ =

√
2α2

(µ+ 1)α2

∣∣∣∣∣∣∣∣1 +
log
∣∣ log 2λx
log λ(µ+1)

∣∣
log | log λ(µ+ 1)|

∣∣∣∣1/2 − 1

∣∣∣∣
≤
√

2α2

∣∣∣∣ log
∣∣ log 2λx
log λ(µ+1)

∣∣
log | log λ(µ+ 1)|

∣∣∣∣1/2,
(3.2.9)

where we used that |
√
|1 + a| − 1| ≤

√
|a| for all a ∈ R. If further x ≤ µ+1

2
, then

log 2x/(µ+1)
log λ(µ+1)

≥ 0, and therefore

∣∣∣∣log

∣∣∣∣ log 2λx

log λ(µ+ 1)

∣∣∣∣∣∣∣∣ =

∣∣∣∣log

∣∣∣∣1 +
log 2x/(µ+ 1)

log λ(µ+ 1)

∣∣∣∣∣∣∣∣
= log

(
1 +

∣∣∣∣ log 2x/(µ+ 1)

log λ(µ+ 1)

∣∣∣∣)
≤
∣∣∣∣ log 2x/(µ+ 1)

log λ(µ+ 1)

∣∣∣∣ .
(3.2.10)

Thus, we deduce

∣∣∣∣ κ2λx

κλ(µ+1)

√
γ(x)

−

√
2α2

(µ+ 1)α2

∣∣∣∣ ≤ √2α2
(| log 2x|+ | log (µ+ 1)|)1/2

| log λ(µ+ 1)|1/2 | log | log λ(µ+ 1)||1/2
. (3.2.11)

Result (i) follows immediately.

The functional

I(ϕ) := sup
µ∈[0,1]

∫ µ+1
2

µ
2

|ϕ(x)| −
√
γ(x) dx (3.2.12)

on C([0, 1]) is continuous, so that the local functional LIL implies

lim sup
λ↓0

sup
µ∈[0,1]

∫ µ+1
2

µ
2

|ξλx | −
√
γ(x) dx = sup

ϕ∈K
sup

µ∈[0,1]

∫ µ+1
2

µ
2

|ϕ(x)| −
√
γ(x) dx. (3.2.13)

78



Notice that for all ϕ ∈ K,

|ϕ(x)| = |⟨ϕ,Γ(x, ·)⟩| ≤ ⟨ϕ, ϕ⟩1/2 · ⟨Γ(x, ·),Γ(x, ·)⟩1/2 ≤
√
γ(x), x ∈ [0, 1], (3.2.14)

thanks to ⟨Γ(x, ·),Γ(x, ·)⟩ = Γ(x, x) = γ(x). Moreover, it is enough to prove that

sup
ϕ∈K

sup
a∈[0,1/2]

∫ a+1/2

a

|ϕ(x)| −
√
γ(x) dx < 0. (3.2.15)

If the supremum in (3.2.15) was zero, then the continuity of the underlying functional

on the compact K×[0, 1/2] would yield the existence of some ϕ ∈ K and some a ∈ [0, 1/2]

such that ∫ a+1/2

a

|ϕ(x)| −
√
γ(x) dx = 0, (3.2.16)

and thus the Cauchy-Schwarz inequalities in (3.2.14) would hold with equality for Lebesgue

almost every x ∈ [a, a+ 1/2]. As a consequence, {Γ(x, ·)}x would be pairwise linearly de-

pendent for these x, in contradiction to the assumed non-degeneracy of Γ. This proves

(ii).

To obtain (iii) we apply the local functional LIL to the continuous functional

C([0, 1])→ R, ϕ 7→
∫ 1

0

∣∣|ϕ(x)| −
√
γ(x)

∣∣2 dx, (3.2.17)

and use |ϕ(x)| ≤
√
γ(x), x ∈ [0, 1] for ϕ ∈ K to easily get

∫ 1

0

∣∣|ϕ(x)| −
√
γ(x)

∣∣2 dx ≤ 2 sup
x∈[0,1]

γ(x) = 2 (3.2.18)

for all those ϕ.

We are now ready for the proof of Proposition 3.2.1.

Proof of Proposition 3.2.1. We only need to show (3.0.5b). Throughout the proof

we take λ0 > 0 to be small enough so that | log λx| ≥ 1, λ ∈ [0, λ0), x ∈ [0, 2]; κ is
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non-decreasing on [0, 2λ0]; and f(x) ≤ 1 + Sx − κx, x ∈ [0, 2λ0]. Then,

κλx = β
√
γ(λx) log | log λx| ≥

√
γ(x)κλ

∣∣∣∣ log | − log λ− log 2|
log | log λ|

∣∣∣∣1/2
=
√
γ(x)κλ qλ,

(3.2.19)

where

qλ :=

∣∣∣∣1 +
log
∣∣1 + log 2

log λ

∣∣
log | log λ|

∣∣∣∣1/2 −→λ↓0 1. (3.2.20)

It follows that, for λ ∈ [0, λ0) and x ∈ [0, 2],

f(λx) ≤ 1 + κλx

(
|Sλx|
κλx

− 1

)
≤ 1 +

κλx
qλ

(
|ξλx |√
γ(x)

− qλ
)
. (3.2.21)

Let ξ̂λx := 2−α2/2ξλ2x. Then, for µ ∈ [0, 1],

ψ(λ, µ)− 1 ≤ 1

qλ

∫ µ+1

µ

κλx

(
|ξλx |√
γ(x)

− qλ
)

dx

=
2

qλ

∫ µ+1
2

µ
2

κ2λx

(
|ξλ2x|√
γ(2x)

− qλ
)

dx

=
2

qλ

∫ µ+1
2

µ
2

κ2λx

(
|ξ̂λx |√
γ(x)

− qλ
)

dx

≤ 2

qλ

∫ µ+1
2

µ
2

κ2λx

(
|ξ̂λx |√
γ(x)

− 1

)
dx+

∣∣∣∣1− 1

qλ

∣∣∣∣ κλ(µ+1).

(3.2.22)

Next, we abbreviate 2α2/2/(µ+ 1)α2/2 by ζ(µ) and rewrite

∫ µ+1
2

µ
2

κ2λx

(
|ξ̂λx |√
γ(x)

− 1

)
dx

= ζ(µ)κλ(µ+1)

(∫ µ+1
2

µ
2

|ξ̂λx | −
√
γ(x) dx

+
1

ζ(µ)

∫ µ+1
2

µ
2

(
κ2λx

κλ(µ+1)

√
γ(x)

− ζ(µ)

)(
|ξ̂λx | −

√
γ(x)

)
dx

)
.

(3.2.23)

Using that 1 ≤ ζ(µ) ≤ 2α2/2, that (ξ̂λx)x∈[0,1],λ∈(0,1]
d
= (ξλx)x∈[0,1],λ∈(0,1] by the scaling rela-
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tion (3.2.4), and the Cauchy-Schwarz inequality in conjunction with Lemma 3.2.2(i),(iii)

we obtain

lim sup
λ↓0

sup
µ∈[0,1]

∣∣∣∣ 1

ζ(µ)

∫ µ+1
2

µ
2

(
κ2λx

κλ(µ+1)

√
γ(x)

− ζ(µ)

)(
|ξ̂λx | −

√
γ(x)

)
dx

∣∣∣∣ = 0. (3.2.24)

In conclusion,

ψ(λ, µ)− 1

2α2/2 κλ(µ+1)

≤ ψ(λ, µ)− 1

ζ(µ)κλ(µ+1)

≤ 2

qλ
sup

µ∈[0,1]

∫ µ+1
2

µ
2

|ξ̂λx | −
√
γ(x) dx

+
2

qλ
sup

µ∈[0,1]

∣∣∣∣ 1

ζ(µ)

∫ µ+1
2

µ
2

(
κ2λx

κλ(µ+1)

√
γ(x)

−ζ(µ)

)(
|ξ̂λx |−

√
γ(x)

)
dx

∣∣∣∣
+

∣∣∣∣1− 1

qλ

∣∣∣∣ ,
(3.2.25)

for which (3.2.20), (ξ̂λx)x∈[0,1],λ∈(0,1]
d
= (ξλx)x∈[0,1],λ∈(0,1], Lemma 3.2.2 (ii) and (3.2.24) yield

the existence of a λ0 > 0 such that

ψ(λ, µ) ≤ 1− 2α2/2 κλ(µ+1)
η

2
(3.2.26)

for all λ ∈ [0, λ0) and µ ∈ [0, 1].

Remark 3.2.3. (a) Our proof of Proposition 3.2.1 also applies to densities f with the

property

f(x) =

(
1 + κ̃x

(
Sx

κx
− 1

))
+

∧ 1, x ∈ [0, 1], (3.2.27)

for a non-negative non-decreasing function κ̃ obeying

lim
λ↓0

sup
µ∈[0,1]

∫ µ+1
2

µ
2

∣∣∣∣ κ̃2λx

κ̃λ(µ+1)

√
γ(x)

−

√
2α2

(µ+ 1)α2

∣∣∣∣2 dx = 0. (3.2.28)
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In addition, one can cover densities f with

f(x) =
|Sx|
κx
∧ 1, x ∈ [0, 1] (3.2.29)

by repeating the proof of Lemma 3.2.2(ii) for the final line in (3.2.22) with 1 in place of κ.

(b) By using a very similar method, we can verify condition (3.0.5) for densities f such

that

f(x) =
|S1/x|
κ1/x

∧ 1, x ∈ (0, 1], (3.2.30)

where S satisfies the scaling property (3.2.4) and a local functional LIL “at infinity”: Al-

most surely, the family
{(

Srx

κr

)
x∈[0,1]

}
r≥3

is relatively compact in C([0, 1]) with the set of

limit points K as above. The local functional LIL at infinity is known for various classes

of Gaussian processes S, including fractional Brownian motion (see [85, Example 4.36]),

semi-stable Gaussian processes (see [94, Theorem 4]), Gaussian processes that are not

necessarily semi-stable (see [95, Theorem 4]) but for which [95, Condition (A-1)] makes

an adaptation of our proof possible, and rescalings of Brownian motion (see [16, Theo-

rems 1–3]).

(c) Another interesting process admitting a local functional LIL at infinity is iterated

Brownian motion (see [61, Theorem 1.1]). In this case, our proof can be adjusted as

follows. Let (W 1
x )x∈R and (W 2

x )x≥0 be two independent standard Brownian motions. Define

Sx = W 1
W 2

x
, x ≥ 0 (3.2.31)

and

κx = 23/4x1/4(log log x)3/4, x ≥ 3. (3.2.32)
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The relevant compact subset K of C([0, 1]) is then given by

K =

{
f ◦ g : f ∈ C([−1, 1]), g ∈ C([0, 1]), f(0) = g(0) = 0,∫ 1

−1

f ′(x)2 dx+

∫ 1

0

g′(x)2 dx ≤ 1

}
.

(3.2.33)

Indeed, [61, Theorem 1.1] implies that, almost surely,

lim sup
r→∞

I
(
Sr·

κr

)
= sup

ϕ∈K
I(ϕ), (3.2.34)

for any continuous functional I : C([0, 1]) → R. This allows us to redo the proofs of

Lemma 3.2.2 and Proposition 3.2.1. In particular, the inequalities in (3.2.14) can be

replaced by

ϕ(x)=

∫ 1

0

f ′(y)1{y≤g(x)} dy ≤
(∫ 1

0

f ′(y)2 dy

)1/2√
g(x)

≤

√(∫ x

0

g′(y)2 dy

)1/2

x1/2

≤x1/4,

(3.2.35)

for all x ∈ [0, 1] and ϕ = f ◦ g ∈ K.

3.2.2 Initial conditions constructed from periodic functions

Let Ψ : [0,∞) → [−1, 1] be a periodic function with supx≥0

∫ x

0
Ψ(y) dy < ∞ and

lim supx→∞ Ψ(x) = 1. In this subsection, we show that, for any α > 0, the oscillat-

ing probability density given by

f(x) =
1

2

(
1 + Ψ

(
1

xα

))
, x ∈ (0, a] (3.2.36)

satisfies condition (3.0.5). The parameter α controls how fast the density oscillates (cf. Re-

mark 3.0.5).
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Proposition 3.2.4. Every probability density f defined by (3.2.36) obeys condition (3.0.5).

Proof. We only need to check (3.0.5b). To this end, for λ ∈
(
0, a

2

)
and µ ∈ [0, 1], we

compute

ψ(λ, µ)− 1

2
=

1

2

∫ µ+1

µ

Ψ

(
1

λαxα

)
dx =

1

2αλ

∫ 1
λαµα

1
λα(µ+1)α

Ψ(x)

x
1
α
+1

dx.

Integrating by parts, writing H(x) for
∫ x

0
Ψ(y) dy, and using µ+ 1 ≤ 2 we get

ψ(λ, µ)− 1

2
=

1

2αλ

[
λα+1µα+1H

(
1

λαµα

)
− λα+1(µ+ 1)α+1H

(
1

λα(µ+ 1)α

)]
+

1

2αλ

(
1

α
+ 1

)∫ 1
λαµα

1
λα(µ+1)α

H(x)

x
1
α
+2

dx

≤ sup
x≥0

H(x)
λα

α
2α+1.

Therefore, it holds

sup
µ∈[0,1]

ψ(λ, µ) <
3

4
(3.2.37)

for all λ ≥ 0 small enough.

3.3 Refined analysis for some piecewise constant ini-

tial conditions

This section is devoted to the well-posedness question for oscillatory and piecewise con-

stant probability densities defined by

f(x) =


α1, x ∈

⋃
n≥1

[a2n, a2n−1),

α2, x ∈
⋃
n≥1

[a2n+1, a2n),

(3.3.1)

where 0 < α1 < 1 < α2, a2n−1 = rn−1a1, a2n = prn−1a1, and r = pq, p, q ∈ (0, 1). Such

densities are of interest because they can violate both (3.0.5a) and (3.0.5b), thus ne-

84



cessitating additional arguments to prove the uniqueness of the associated physical so-

lution. Note that the CDF F is piecewise linear and oscillates between the half-lines

y = β1x and y = β2x, with 0 < β1 < β2 given by

β1 =
1

1− pq
(
α2p(1− q) + α1(1− p)

)
, (3.3.2)

β2 =
1

1− pq
(
α2(1− q) + α1q(1− p)

)
. (3.3.3)

For technical reasons (see Proposition 3.3.5 below), we assume in the following that

β2 < 1, namely

α2 < 1 + q
1− p
1− q

(1− α1). (3.3.4)

Condition (3.0.5a) is not satisfied by f . For q ∈ (0, 1/2], condition (3.0.5b) fails for it as

well.

Proposition 3.3.1. For q ∈ (0, 1/2], the density f defined by (3.3.1) violates condition

(3.0.5b).

Proof. Take λ = 1−q
q
a2n+1 for an integer n ≥ 1 and set µ̃ = q

1−q
∈ (0, 1]. Observe that

λµ̃ = a2n+1, whereas λ(µ̃+ 1) = a2n+1

(
1 + 1−q

q

)
= a2n. Thus,

∫ µ̃+1

µ̃

f(λx) dx = α2 > 1. (3.3.5)

Consequently, also

sup
µ∈[0,1]

∫ µ+1

µ

f(λx) dx = α2 > 1. (3.3.6)

Hence, condition (3.0.5b) cannot hold.

Nevertheless, we are able to prove Proposition 3.0.6. Our proof relies on the next

proposition, akin to Proposition 3.1.3.

Proposition 3.3.2. For any α2 > 1 close enough to 1,

sup
t∈(0,T ]

sup
h>0

E
[
F (Yt + h)− F (Yt)

h

]
=: δ0 < 1. (3.3.7)
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Once this result is proved, the desired uniqueness on [0, T ] can be shown by proceeding

as in the proof of Theorem 3.0.1, only with 1− δ0 in place of Φ(t, λ). The strategy of the

proof of Proposition 3.3.2, in turn, lies in finding a set G ⊂ [0,∞) such that for α2 > 1

close enough to 1,

sup
y∈G

sup
h>0: y+h≤a1

F (y + h)− F (y)

h
=: L < 1. (3.3.8)

Then, estimating the expectation in (3.3.7) according to

E
[
F (Yt + h)− F (Yt)

h

]
≤ α2 − (α2 − L)P (Yt ∈ G) (3.3.9)

it remains to check that Yt falls into G with a sufficiently high probability, namely

inf
t∈(0,T ]

P (Yt ∈ G) >
α2 − 1

α2 − L
. (3.3.10)

The two assertions (3.3.8) and (3.3.10) are the subjects of Subsections 3.3.1 and 3.3.2,

respectively.

3.3.1 Proof of (3.3.8)

Lemma 3.3.3. Let G =
⋃

n≥1[a2n+2, ϱa2n+1] ∪ [a2,∞), where ϱ := 1+p
2
. Then,

sup
y∈G

sup
h>0: y+h≤a1

F (y + h)− F (y)

h
=

(1− q)α2 + q(1− ϱ)α1

1− qϱ
=: L. (3.3.11)

Moreover, for α2 > 1 close enough to 1, it holds L < 1.

Proof. It suffices to show (3.3.11) with G\[a2,∞) in place of G. To this end, fix an n ≥ 1

and a y ∈ [a2n+2, ϱa2n+1]. Define the function

θ : (0, a1 − y]→ [0,∞), h 7→ F (y + h)− F (y)

h
. (3.3.12)
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By the definition of F , we have for k = 1, 2, . . . , n:


θ′(h) ≥ 0, y + h ∈ (a2k+1, a2k),

θ′(h) ≤ 0, y + h ∈ (a2k, a2k−1).

(3.3.13)

Therefore,

sup
h>0: y+h≤a1

F (y + h)− F (y)

h
= sup

a2k≥a2n

F (a2k)− F (y)

a2k − y
. (3.3.14)

Notice now that the sequence

(
F (a2k)− F (y)

a2k − y

)
k=1, 2, ..., n

(3.3.15)

is non-decreasing. Indeed, for k = 2, 3, . . . , n,

F (a2k)− F (y)

a2k − y
− F (a2k−2)− F (y)

a2k−2 − y
=

(yβ2 − F (y))(a2k−2 − a2k)

(a2k − y)(a2k−2 − y)
≥ 0. (3.3.16)

We conclude

sup
h>0: y+h≤a1

F (y + h)− F (y)

h
=
F (a2n)− F (y)

a2n − y
. (3.3.17)

Since the right-hand side is non-decreasing in y on [a2n+2, ϱa2n+1],

sup
y∈[a2n+2,ϱa2n+1]

sup
h>0: y+h≤a1

F (y + h)− F (y)

h
=
F (a2n)− F (ϱa2n+1)

a2n − ϱa2n+1

=
(1− q)α2 + q(1− ϱ)α1

1− qϱ
.

(3.3.18)

This proves the first statement. The second one is straightforward to verify.

3.3.2 Proof of (3.3.10)

The key step in deriving (3.3.10) is an estimate of the probabilities

P
(
Yt ∈ [a

√
t, b
√
t]
)
, 0 < a < b, t ∈ (0, T ]. (3.3.19)
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For that purpose, we establish the 1/2–Hölder continuity of the frontier Λ on [0, T ]. As

a preparation for the latter, we introduce for each t ∈ [0, T ] the function

Ft : [0,∞)→ [0, 1], x 7→ P (0 < Xt ≤ x) = E [F (Λt −Bt + x)− F (Λt −Bt)] (3.3.20)

and notice immediately that F ′
t(x) ≤ α2. Moreover, we have the following bound.

Lemma 3.3.4. For all t ∈ [0, T ], it holds

Λt+h − Λt − Ft(Λt+h − Λt) ≤ α2

√
2

π

√
h, h > 0. (3.3.21)

Proof. We start with the inequalities

Λt+h − Λt = P
(

sup
0≤s≤t

(−Bs + Λs) < X0− ≤ sup
0≤s≤t+h

(−Bs + Λs)
)

= P
(

sup
0≤s≤t

(−Bs + Λs) +Bt − Λt < X0− +Bt − Λt ≤ sup
t≤s≤t+h

(−Bs + Λs) +Bt − Λt

)
≤ P

(
0 < Xt ≤ sup

t≤s≤t+h
(Bt −Bs) + Λt+h − Λt

)
= Ft(Λt+h − Λt)

+ P
(
{Λt+h − Λt < Xt} ∩

{
Xt − (Λt+h − Λt) ≤ sup

t≤s≤t+h
(Bt −Bs)

})
.

(3.3.22)

Consequently,

Λt+h − Λt − Ft(Λt+h − Λt) ≤
∫ ∞

0

P
(
x ≤ sup

t≤s≤t+h
(Bt −Bs)

)
dFt(x+ Λt+h − Λt)

≤ α2

√
2

π

√
h,

(3.3.23)

as stated in the lemma.

As a direct implication, we obtain the square root behavior of the frontier Λ.

Proposition 3.3.5. For any α2 > 1 close enough to 1, there exist 0 < c1 ≤ c2 <∞ such
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that

c1
√
t ≤ Λt ≤ c2

√
t, t ∈ [0, T ]. (3.3.24)

Proof. For the lower bound, we notice that Zt ≥ sup0≤s≤t(−Bs), and hence,

Λt = E [F (Zt)] ≥ E
[
F
(

sup
0≤s≤t

(−Bs)
)]
≥ β1E

[
sup
0≤s≤t

(−Bs)
]

= β1

√
2

π

√
t, t ∈ [0, T ].

(3.3.25)

For the upper bound, we apply Lemma 3.3.4 with t = 0 and get

Λh ≤
α2

1− β2

√
2

π

√
h, h ∈ (0, T ] (3.3.26)

thanks to Λ0 = 0 and F0(x) = F (x) ≤ β2x.

The 1/2–Hölder continuity of Λ on [0, T ] is deduced similarly from the next proposi-

tion.

Proposition 3.3.6. For any α2 > 1 close enough to 1, there exists a β ∈ [0, 1) such that

(i) Ft(x) ≤ βx, x ≥ 0, t ∈ [0, T ], and

(ii) E [f(Λt− +Bt)] ≤ β, t ∈ (0, T ].

In particular, Λ is continuous on [0, T ].

Proof. Fix a C ∈ (0,∞) and consider a t ∈ (0, T ]. Then, for x > CΛt,

Ft(x) ≤ E [F (Λt −Bt + x)] ≤ β2E [(Λt −Bt + x)+]

≤ β2

(
1 + C

C
x+

1√
2π

√
t

)
.

(3.3.27)

In view of the square root lower bound
√
t ≤ Λt

c1
, we have for x > CΛt,

Ft(x) ≤ β2

(
1 + C

C
+

1

Cc1
√

2π

)
x. (3.3.28)
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Since c1 = β1
√

2/π ≥ α1

√
2/π, we conclude

Ft(x) ≤ β2

(
1 + C

C
+

1

2α1C

)
x, x > CΛt. (3.3.29)

Next, take x ≤ CΛt. By definition,

Ft(x) = E
[∫ Λt−Bt+x

Λt−Bt

f(y) dy

]
= E

[∫ Λt+x

Λt

f(y −Bt) dy

]
=

∫ Λt+x

Λt

E [f(y +Bt)] dy.

(3.3.30)

Thus, it suffices to show that for any α2 > 1 close enough to 1, there exists a β ∈ [0, 1)

such that

E [f(y +Bt)] ≤ β, y ∈ [Λt, (1 + C)Λt]. (3.3.31)

Set H =
⋃
k≥1

[a2k, a2k−1) ∪ [a1,∞) and estimate E [f(y +Bt)] according to

E [f(y +Bt)] = E [(f 1H)(y +Bt)] + E [(f 1Hc)(y +Bt)]

≤ α2 − (α2 − α1)P (y +Bt ∈ H).

(3.3.32)

Our goal now is to lower bound P (y +Bt ∈ H) for y ∈ [Λt, (1 + C)Λt]. We distinguish

four cases.

Case 1: y ∈
[
a2n+2,

a2n+2+a2n+1

2

)
for some n ≥ 0. In this case, we find

P (y +Bt ∈ H) ≥ P
(
Bt ∈ [a2n+2 − y, a2n+1 − y)

)
≥ P

(
Bt ∈

[
0,
a2n+1 − a2n+2

2

))
.

(3.3.33)

In view of

a2n+1 − a2n+2

2
=

1− p
2

a2n+1 ≥
1− p

2
y ≥ 1− p

2
Λt, (3.3.34)

we get

P (y +Bt ∈ H) ≥ P
(
Bt ∈

[
0,

1− p
2

Λt

))
. (3.3.35)
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Case 2: y ∈
[
a2n+2+a2n+1

2
, a2n+1

)
for some n ≥ 0. Similarly to the previous case, we have

P (y +Bt ∈ H) ≥ P
(
Bt ∈

[
− a2n+1 − a2n+2

2
, 0
])
≥ P

(
Bt ∈

[
0,

1− p
2

Λt

])
. (3.3.36)

Case 3: y ∈ [a2n+1, a2n) for some n ≥ 1. In this case,

P (y +Bt ∈ H) ≥ P (Bt ∈ [a2n − y, a2n−1 − y])

≥ a2n−1 − a2n√
2πt

e−
(a2n−1−y)2

2t

≥ a2n−1 − a2n√
2πt

e−
(a2n−1−a2n+1)

2

2t .

(3.3.37)

Using

a2n−1 − a2n =
1− p
p

a2n ≥
1− p
p

y ≥ 1− p
p

Λt (3.3.38)

and

a2n−1 − a2n+1 =
1− pq
pq

a2n+1 ≤
1− pq
pq

y ≤ 1− pq
pq

(1 + C)Λt (3.3.39)

we end up with

P (y +Bt ∈ H) ≥ 1− p
p

Λt√
2πt

e
− (1−pq)2(1+C)2

(pq)2
Λ2
t

2t . (3.3.40)

Case 4: y ∈ [a1,∞). Here,

P (y +Bt ∈ H) ≥ P
(
Bt ∈ [a1 − y,∞)

)
≥ 1

2
. (3.3.41)

Combining (3.3.35), (3.3.36), (3.3.40) and (3.3.41), and employing c1 ≤ Λt√
t
≤ c2, we

arrive at

P (y +Bt ∈ H) ≥ min

(
P
(
N ∈

[
0,

1− p
2

c1

])
,
1− p
p

c1√
2π
e
− (1−pq)2(1+C)2

(pq)2
c22
2 ,

1

2

)
. (3.3.42)

At this point, we choose C = (2α1+1)β2

α1(1−β2)
, so that

β2

(
1 + C

C
+

1

2α1C

)
=

1 + β2
2

< 1. (3.3.43)
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Then, the right-hand side in (3.3.42) depends on α2 via c1, c2, and C. For α2 ↓ 1, the

values of β1, β2 tend to (distinct) limits in (0, 1), hence c1 stays bounded away from zero,

and c2, C stay bounded away from infinity. Therefore,

lim inf
α2↓1

P (y +Bt ∈ H) ≥

lim inf
α2↓1

min

(
P
(
N ∈

[
0,

1− p
2

c1

])
,
1− p
p

c1√
2π
e
− (1−pq)2(1+C)2

(pq)2
c22
2 ,

1

2

)
> 0.

(3.3.44)

Consequently, for any α2 > 1 close enough to 1,

P (y +Bt ∈ H) >
α2 − 1

α2 − α1

, (3.3.45)

yielding by (3.3.32) a β ∈ [0, 1) such that

E [f(y +Bt)] ≤ β, y ∈ [Λt, (1 + C)Λt]. (3.3.46)

Together with (3.3.30), (3.3.29) and (3.3.43) this finishes the proof of (i).

Result (ii) can be obtained by noticing that

c1 = c1 sup
0<s<t

√
s√
t
≤ sup

0<s<t

Λs√
t

=
Λt−√
t
, (3.3.47)

and by subsequently repeating (3.3.32)–(3.3.46) mutatis mutandis. Lastly, the final state-

ment in the proposition is immediate from (ii) and the physical jump condition (3.0.3).

Combining Lemma 3.3.4 and Proposition 3.3.6 we deduce the next proposition.

Proposition 3.3.7. For any α2 > 1 close enough to 1, there exists a c3 ∈ (0,∞) such

that

Λt+h − Λt ≤ c3
√
h, h ∈ [0, T − t], t ∈ [0, T ]. (3.3.48)
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Moreover, c3 can be chosen according to

c3 =
α2

1− β

√
2

π
. (3.3.49)

We are now ready to estimate the probabilities in (3.3.19).

Lemma 3.3.8. Let U := sup0≤s≤1(Bs + c3
√
s). Then, for any α2 > 1 close enough to 1,

P
(

sup
0≤s≤t

(−Bs + Λs) ∈ [a
√
t, b
√
t]
)
≥ P (|N | ≥ a) P (U ≤ b− a) , (3.3.50)

for all 0 < a < b and t ∈ (0, T ].

Proof. We fix 0 < a < b, t ∈ (0, T ], and set

τa = inf{s > 0 : Bs + Λs ≥ a
√
t}. (3.3.51)

Consider the representation

P
(

sup
0≤s≤t

(−Bs + Λs) ∈ [a
√
t, b
√
t]
)

= P
(
τa ≤ t, sup

τa≤s≤t
(Bs + Λs) ≤ b

√
t
)
. (3.3.52)

By the continuity of Λ,

Bτa + Λτa = a
√
t, (3.3.53)

and therefore writing W for the Brownian motion Bτa+· −Bτa we find

P
(

sup
0≤s≤t

(−Bs + Λs) ∈ [a
√
t, b
√
t]
)

= P
(
τa ≤ t, sup

0≤s≤t−τa

(Ws + Λτa+s − Λτa) ≤ (b− a)
√
t
)
.

(3.3.54)

Next, we use Λτa+s − Λτa ≤ c3
√
s to deduce

P
(

sup
0≤s≤t

(−Bs + Λs) ∈ [a
√
t, b
√
t]
)
≥ P

(
τa ≤ t, sup

0≤s≤t
(Ws + c3

√
s) ≤ (b− a)

√
t
)
. (3.3.55)
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The trivial lower bound Λ ≥ 0 implies

P (τa ≤ t) = P
(

sup
0≤s≤t

(Bs + Λs) ≥ a
√
t
)
≥ P

(
sup
0≤s≤t

Bs ≥ a
√
t
)

= P (|N | ≥ a). (3.3.56)

This and the independence of W from τa yield

P
(

sup
0≤s≤t

(−Bs + Λs) ∈ [a
√
t, b
√
t]
)
≥ P (τa ≤ t) P (U ≤ b− a)

≥ P (|N | ≥ a) P (U ≤ b− a),

(3.3.57)

finishing the proof.

We conclude with the proof of (3.3.10).

Lemma 3.3.9. For any α2 > 1 close enough to 1, there exists a δ < 1 such that

inf
t∈(0,T ]

P (Yt ∈ G) ≥ α2 − δ
α2 − L

. (3.3.58)

Proof. Fix a t ∈ (0, T ]. If
√
t < a3, let n ≥ 1 satisfy

rn+1a1 = a2n+3 ≤
√
t < a2n+1 = rna1. (3.3.59)

Then,

ϱa2n+1 − a2n+2√
t

≥ ϱ− p (3.3.60)

and

a2n+2√
t
≤ 1

q
. (3.3.61)

Therefore, by Lemma 3.3.8,

P (Yt ∈ G) ≥


P (Yt ∈ [a2n+2, ϱa2n+1]) ≥ P (|N | ≥ 1/q) P (U ≤ ϱ− p), if

√
t < a3,

P (Yt ∈ [a2,∞)) ≥ P
(
|N | ≥ a2/

√
t
)
≥ P (|N | ≥ 1/q), if

√
t ≥ a3.

(3.3.62)
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Since c3 (appearing in the definition of U) stays bounded as α2 ↓ 1,

lim inf
α2↓1

P (Yt ∈ G) ≥ P (|N | ≥ 1/q) lim inf
α2↓1

P (U ≤ ϱ− p) =: ι > 0. (3.3.63)

Thus, for any α2 > 1 close enough to 1,

P (Yt ∈ G) ≥ ι

2
. (3.3.64)

Choosing

δ = α2 −
ι

2
(α2 − L) (3.3.65)

we obtain, for any α2 > 1 close enough to 1,

P (Yt ∈ G) ≥ ι

2
=
α2 − δ
α2 − L

and δ < 1, (3.3.66)

and hence, (3.3.58).
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Chapter 4

Strong existence and uniqueness of a

calibrated stochastic local volatility

model

For the family of local stochastic volatility (LSV) models


dSt = σlsv(t, St)atStdBt, t ≥ 0,

St=0 = S0,

(4.0.1)

to be calibrated to the market prices of European call options (C(t,K))t>0,K>0 it is enough

to take the leverage function σlsv as

σlsv(t,K) =
σloc(t,K)√
E [a2t |St = K]

, t > 0, K > 0, (4.0.2)

where (St)t≥0 is the price process, (Bt)t≥0 is a real standard Brownian motion, S0 is a

positive random variable independent of (Bt)t≥0, σloc(t,K) :=
√

2∂tC(t,K)

∂2
KC(t,K)

, t > 0, K > 0 is

the so-called Dupire volatility [31] and (at)t≥0 is any stochastic process. This is justified

by Gyöngy’s theorem [57] that asserts that a stochastic process (St)t≥0 solving (4.0.1)

and (4.0.2) has fixed-time marginal distributions given by the marginal distributions of
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the local volatility model dSloc
t = σloc(t, S

loc
t )Sloc

t dBt and starting at S0. In order to make

the model tractable, one commonly assumes that (at)t≥0 is given by (
√
f(Yt))t≥0 where

f : R → R∗
+ is a bounded smooth function and (Yt)t≥0 is another real Itô-Lévy process

eventually correlated to (Bt)t≥0.

Formally, the joint density p(t, s, y) of (St, Yt), (t, s, y) ∈ R+×R∗
+×R, solves a quasi-

linear and non-local Fokker-Planck partial differential equation (PDE), whose coefficients

depend upon the non-linear term

∫
p(·, ·, z)dz∫

f(z)p(·, ·, z)dz
. (4.0.3)

While the applications are important in calibration to market implied volatility sur-

faces ([59], [53, Chapter 11], [1], [103]) the existence and uniqueness of solutions to the

SDE and PDE problems is still an open problem. Only partial results have been obtained

in particular cases.

Abergel and Tachet showed in [2, Theorem 3.1], the existence of a classical solution

to the PDE problem in a bounded domain of R2 and with additional Dirichlet boundary

condition - for short time, and for sup |f ′′| small enough. In [76, Theorem 1.4], the

authors established the existence and uniqueness of a stationary solution to a similar

SDE (a drift needs to be added to the dynamic of (St)t≥0 to allow the possibility of a

stationary measure). Jourdain and Zhou proved in [67, Theorems 2.4, 2.5], the existence

of a weak solution to the SDE. Under the assumption that (Yt)t≥0 is a jump process

taking finitely many values and after writing the PDE problem as a system of parabolic

equations in non-divergence form, the authors are able to write a variational formulation

of the problem, for which existence of a solution can be proved - by the Galerkin’s method

- provided that the range of f is small enough. They are then able to prove the existence

of a weak solution to the SDE. Uniqueness and propagation of chaos are out of reach

in the approach of [67] because higher regularity of the weak solution is needed. Global

regularity of weak solutions to parabolic systems is still an open problem.
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The difficulty of the analysis of the McKean-Vlasov SDE and the related non-linear

PDE stems from the singularity of the denominator
∫
f(z)p(·, ·, z)dz. However, the well-

posedness of McKean-Vlasov problems with coefficients depending smoothly on the den-

sity p of the unknown process has been studied in various papers [65], [93], [72], [15].

The main contribution of our paper is the proof of well-posedness of a regularized

version of SDE (4.0.1) - (4.0.2) when (at)t≥0 is time independent and given by f(Y ),

where Y is a fixed random variable independent of (Bt)t≥0 and takes finitely many values

in {1, . . . , N}, N ≥ 2 and f : {1, . . . , N} → R∗
+. The regularization is chosen so that the

calibration property is conserved. In other words, the fixed-time marginals of a solution

are still given by the marginals of Sloc
t = S0 +

∫ t

0
σloc(s, S

loc
s )Sloc

s dBs, t ≥ 0.

Let (Xt)t≥0 = (logSt)t≥0 be the log price and set σ(t, x) := σloc(t, e
x), (t, x) ∈ R+×R.

Herein, we assume that Y is a random variable taking finitely many values {1, · · · , N},

N ≥ 2. Let ε > 0 and consider the McKean-Vlasov SDE


dXt = −1

2
ε+f(Y )p(t,Xt)

ε+E[f(Y )|Xt]p(t,Xt)
σ(t,Xt)

2dt+
√

ε+f(Y )p(t,Xt)
ε+E[f(Y )|Xt]p(t,Xt)

σ(t,Xt)dBt,

P (Xt ∈ dx) = p(t, x)dx,

Xt=0 = X0,

(4.0.4)

where X0 is a real random variable independent of (Bt)t≥0.

We notice immediately

E

(√ ε+ f(Y )p(t,Xt)

ε+ E [f(Y )|Xt] p(t,Xt)
σ(t,Xt)

)2 ∣∣∣Xt

 = σ(t,Xt)
2, (4.0.5)

and consequently the model is calibrated, meaning exp(Xt) and Sloc
t have the same law

for all t ≥ 0.

In the general case where (at)t≥0 = (f(Yt))t≥0 and Y is an Itô process, the uniform

ellipticity of the non-linear PDE - written in divergence form - solved by the joint density

p(t, x, y) of (Xt, Yt), t ≥ 0, does not hold a priori. This property is a key element
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in establishing uniqueness in [65, Equation 1.8]. Therefore, we made the restrictive

assumption that Y is a time-independent discrete random variable and takes finitely

many values. Assuming that the range of f is small enough, we are able to derive a

uniform ellipticity property for the PDE problem, in the spirit of what is done in [67].

We assume in the whole chapter that σ is smooth, has bounded derivatives and there

exist 0 < σ0 < σ1 such that σ0 ≤ σ(t, x) ≤ σ1 for all (t, x) ∈ R+ × R. Moreover,

we assume that the measure P (X0 ∈ dx ∩ Y = n) admits a density Pn : R → R+ - of

total mass P (Y = n) - with bounded first and second derivatives and such that for some

α ∈ (0, 1), the second derivative P
(2)
n is α-Hölder and

∥Pn∥C2+α :=
∑

0≤k≤2

∥P (k)
n ∥∞ + sup

x,y∈R,x ̸=y

|P (k)
n (x)− P (k)

n (y)|
|x− y|α

<∞. (4.0.6)

Denote fmax = max1≤n≤N f(n), fmin = min1≤n≤N f(n) and

f̄ =
1

N

N∑
n=1

f(n). (4.0.7)

We introduce the following small range condition on f .

Condition 4.0.1.

1

2

N + 1− max
1≤k≤N

√√√√ N∑
n=1,n̸=k

f(n)
N∑

n=1,n̸=k

1

f(n)

 ∧ 1 >
1

fmin

√√√√ N∑
n=1

(f(n)− f̄)2

+
fmax − fmin

fmin

.

(4.0.8)

We are now ready to state our main result.

Theorem 4.0.2. Let T > 0. If Condition 4.0.1 is satisfied, P belongs to (C2+α)N , α ∈

(0, 1) and the norm
∑N

n=1 ∥Pn∥C2+α is small enough, then there exists a unique strong solu-

tion to SDE (4.0.4) on [0, T ]. Moreover, X admits a smooth density p ∈
(
C1+α/4,2+α/2

)N
.

We study as well the question of propagation of chaos for SDE (4.0.4). Let M ≥ 1,

(δM)M≥1 ∈ (0, 1)N
∗

be a sequence converging to 0 and W1 : R→ R∗
+ be a bounded kernel
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function with a bounded derivative and satisfying
∫
W1(x)dx = 1 and

∫
xW1(x)dx = 0.

Denote

WδM :=
1

δM
W1

(
·
δM

)
. (4.0.9)

Let (Bi
t)t≥0,i≥1 be a collection of i.i.d standard Brownian motions and (X i

0, Y
i)i≥1 be a

collection of i.i.d random variables of law P (Y i = n ∩X i
0 ∈ dx) = Pn(x)dx, 1 ≤ n ≤ N .

For M ≥ 1, we introduce the approximating system of M particles, already considered

in [52] (for ε = 0)

dX i,M
t =− 1

2

ε+ f(Y i) 1
M

∑M
j=1WδM (X i,M

t −Xj,M
t )

ε+ 1
M

∑M
j=1 f(Y j)WδM (X i,M

t −Xj,M)
σ(t,X i,M

t )2dt

+

√√√√ ε+ f(Y i) 1
M

∑M
j=1WδM (X i,M

t −Xj,M
t )

ε+ 1
M

∑M
j=1 f(Y j)WδM (X i,M

t −Xj,M)
σ(t,X i,M

t )dBi
t,

(4.0.10)

initialized at X i,M
t=0 = X i

0, 1 ≤ i ≤ N .

Assume that the conditions of Theorem 4.0.3 are satisfied. For each 1 ≤ i ≤ M ,

let (X̂ i)t≥0 be the particle starting at X i,M
0 solving (4.0.4) and driven by the Brownian

motion (Bi
t)t≥0 and Y i



dX̂ i
t =− 1

2

ε+ f(Y i)
∑N

n=1 p̂n(t, X̂ i
t)

ε+
∑N

n=1 f(n)p̂n(t, X̂ i
t)
σ(t, X̂ i

t)
2dt

+

√
ε+ f(Y i)

∑N
n=1 p̂n(t, X̂ i

t)

ε+
∑N

n=1 f(n)p̂n(t, X̂ i
t)
σ(t, X̂ i

t)dB
i
t,

P
(
X̂ i

t ∈ dx ∩ Y i = n
)

= p̂n(t, x)dx,

0 ≤ t ≤ T.

. (4.0.11)

The existence and uniqueness of the process (X i,M
t )0≤t≤T,1≤i≤N is ensured by the regularity

of the drift and diffusion coefficients, given by Theorem 4.0.2.

Under Condition 4.0.1, propagation of chaos holds.

Theorem 4.0.3. Let T > 0, (X i,M
t )t≥0 and (X̂ i

t)t≥0 be given by (4.0.10) and (4.0.11)
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respectively. Assume that (δM)M≥1 converges slowly enough towards zero such that

lim
M→∞

1

M

exp (CTδ−4
M )

δ2M
= 0. (4.0.12)

for all constants C > 0.

Then for all 1 ≤ i ≤ N

lim
M→∞

E
[

sup
0≤t≤T

|X i
t − X̂ i

t |2
]

= 0. (4.0.13)

Consequently, for all k ≥ 1 the law of the process (X1,M , X2,M , . . . , Xk,M) converges

weakly towards µ⊗ µ⊗ · · · ⊗ µ, where µ is the law of X̂1.

The main application of this result is the justification of the particular method for

calibrating the LSV model described in [52], [53, Section 11.6.1].

The rest of the article is structured as follows. In Section 4.1 we introduce notation

and prove Theorem 4.0.2. Existence is proved in Subsection 4.1.1 and uniqueness in

Subsection 4.1.2. Section 4.2 is devoted to establishing propagation of chaos.

4.1 Existence and uniqueness

Throughout the rest of the chapter T > 0 is fixed, and

� For any d ≥ 1 andX ∈ Rd, we denote ∥X∥2 =
√∑d

i=1X
2
i and ∥X∥∞ = max1≤i≤d |Xi|.

� The scalar product is denoted ⟨·, ·⟩

⟨X, Y ⟩ =
d∑

i=1

XiYi, X ∈ Rd, Y ∈ Rd. (4.1.1)

� We denote by Lp, p ≥ 1 the space of measurable real-valued functions ϕ for which

∥ϕ∥Lp =
(∫
|ϕ(x)|pdx

)1/p
is finite.
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� We denote by C(0, T, L2) the space of measurable functions ϕ : (t, x) ∈ [0, T ]×R→

R such that the mapping t ∈ [0, T ] → ϕ(t, ·) takes values in (L2, ∥∥L2) and is

continuous.

� For α ∈ (0, 1) we denote by C2+α the space of real functions ϕ on R for which

∥ϕ∥C2+α <∞. We denote by C(k+α)/2,k+α the space of real functions ϕ on [0, T ]×R

which are continuous together with their derivatives ∂rt ∂
l
xϕ, 2r+ l ≤ k and admit a

finite norm

∥ϕ∥C(k+α)/2,k+α =
∑

2r+l≤k

sup
(t,x)∈[0,T ]×R

|∂rt ∂lxϕ(t, x)|

+
∑

k−1≤2r+l≤k

sup
x∈R,t,s∈[0,T ]

|∂rt ∂lxϕ(t, x)− ∂rt ∂lxϕ(s, x)|
|t− s|(k−2r−l+α)/2

+
∑

2r+l=k

sup
t∈[0,T ],x,y∈R

|∂rt ∂lxϕ(t, x)− ∂rt ∂lxϕ(t, y)|
|x− y|α

,

(4.1.2)

where ∂t and ∂x are the partial derivatives with respect to t and x.

� S++ is the set of symmetric and positive N ×N real matrices.

For each 1 ≤ n ≤ N and t ≥ 0, denote by pn(t, x) the conditional density of Xt given

Y = n, multiplied by P (Y = n). In other words, pn(t, x)dx = P (Xt ∈ dx ∩ Y = n) , x ∈

R, 1 ≤ n ≤ N . Set Pn(x)dx = P (X0 ∈ dx ∩ Y = n) for 1 ≤ n ≤ N .

The PDE problem solved by (pn)1≤n≤N can be formulated as a system of N parabolic

PDEs 
∂tp = 1

2
∂xx[σ2Bε(p)p] + 1

2
∂x [σ2Bε(p)p] , (t, x) ∈ [0, T ]× R,

pn/P (Y = n) is a probability density,

pn(0, x) = Pn(x), x ∈ R, 1 ≤ n ≤ N,

(4.1.3)
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where Bε(u), u ∈ (R+)N is a diagonal matrix whose diagonal elements are

Bε
nn(u) = Bε

n(u) :=
ε+ f(n)

∑N
k=1 uk

ε+
∑N

k=1 f(k)uk
, u ∈ RN

+ , 1 ≤ n ≤ N. (4.1.4)

The proof of Theorem 4.0.2 is a direct application of Propositions 4.1.1 and 4.1.4

below.

4.1.1 Existence

Under the condition that the norm
∑N

n=1 ∥Pn∥C2+α is small enough, we prove the ex-

istence, in the classical sense, of a solution to Problem (4.1.3) and the existence of a

stochastic process (Xt)t≥0 solving SDE (4.0.4). The proof follows the approach of [65,

Proof of Proposition 2.2] adapted to our specific McKean-Vlasov equation, whose coeffi-

cients depend on the marginal
∑N

n=1 pn and the quantity
∑N

n=1 f(n)pn.

Proposition 4.1.1. There exists a constant C, depending on T , fmax, fmin and ε, such

that if
∑N

n=1 ∥Pn∥C2+α ≤ C, then there exist a solution (pn)1≤n≤N ∈ (C1+α/2,2+α)N to

Problem (4.1.3), and a solution (Xt)t∈[0,T ] to SDE (4.0.4).

Proof. For 1 ≤ n ≤ N and non-negative u ∈ (C1+α/2,2+α)N , define the operator

∂tv − Ln,uv := ∂tv −
1

2
∂xx[σ2Bε

n(u)v]− 1

2
∂x[σ2Bε

n(u)v]. (4.1.5)

Ln,u is a uniformly parabolic operator of second order with coefficients in Cα/2,α. Ac-

cording to [65, Proposition 1.1](or [77, Chapter IV, Theorem 5.1]), there exists a unique

vn ∈ C1+α/2,2+α such that vn/P (Yt = n) is a probability density and solves in [0, T ]× R


∂tvn = Ln,uvn,

vn(0, x) = Pn(x), x ∈ R.
(4.1.6)

Moreover, there exists a constant C ′ depending only on the regularity of the coefficients
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of Ln,u (namely fmax, fmin, ε and
∑N

l=1 ∥ul∥1+α/2,2+α) such that

∥vn∥C1+α/2,2+α ≤ C ′

(
fmax, fmin, ε,

N∑
l=1

∥ul∥C1+α/2,2+α

)
∥Pn∥C2+α . (4.1.7)

A useful fact about the constant C ′ is that it is non-decreasing in its last argument.

We construct by induction a sequence of solutions as follows. Start by p0n(t, x) =

Pn(x), t ∈ [0, T ], 1 ≤ n ≤ N and x ∈ R. For m ≥ 1, let pmn ∈ C1+α/2,2+α, for each

1 ≤ n ≤ N , be the solution of


∂tp

m
n = Ln,pm−1pmn ,

pmn /P (Y = n) is a probability density,

pmn (0, x) = Pn(x), x ∈ R.

(4.1.8)

Using estimate (4.1.7), we have for each m ≥ 1

N∑
n=1

∥pmn ∥C1+α/2,2+α ≤ C ′

(
fmax, fmin, ε,

N∑
l=1

∥pm−1
l ∥C1+α/2,2+α

)
N∑

n=1

∥Pn∥C2+α . (4.1.9)

Under the assumption
∑N

n=1 ∥Pn∥2+α ≤ C := 1∧ 1
C′(fmax,fmin,ε,1)

, we have by induction

that
∑N

n=1 ∥pmn ∥C1+α/2,2+α ≤ 1 for each m ≥ 1. Indeed, the result holds for m = 0. If∑N
n=1 ∥pm−1

n ∥C1+α/2,2+α ≤ 1 then

N∑
n=1

∥pmn ∥C1+α/2,2+α ≤ C ′ (fmax, fmin, ε, 1)
N∑

n=1

∥P∥C2+α ≤ 1. (4.1.10)

We proved that (pm)m≥0 is a bounded sequence of elements of
(
C1+α/2,2+α

)N
, and simi-

larly to what is done in [65, Proposition 2.2], we can extract a limit point (pn)1≤n≤N ∈

(C1+α/4,2+α/2)N , such that pn/P (Y = n) is a density of probability and (pn)1≤n≤N solves

Problem (4.1.3).

Now, for each 1 ≤ n ≤ N , (pm)1≤m≤N being regular, there exists a strong solution
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(Xt, Yt)t∈[0,T ] to the SDE

Xt = X0 −
1

2

∫ t

0

ε+ f(Y )
∑N

m=1 pm(s,Xn
s )

ε+
∑N

m=1 f(m)pm(s,Xn
s )
σ(t,Xs)

2ds

+

∫ t

0

√
ε+ f(Y )

∑N
m=1 pm(s,Xn

s )

ε+
∑N

m=1 f(m)pm(s,Xn
s )
σ(t,Xs)dBs.

(4.1.11)

Moreover, for each 1 ≤ n ≤ N and t ∈ [0, T ], the law of Xt1Y=n admits a density qn(t, ·)

solving ∂tqn = Ln,pqn, with initial data Pn. The solution of this problem being unique

and given by pn, we conclude that qn = pn for all 1 ≤ n ≤ N .

4.1.2 Uniqueness

Uniqueness is proved by first writing system (4.1.3) in divergence form and then proving

the uniform ellipticity of the differential operator. For all u ∈ C1(R × R+)N , we can

rewrite

∂x[Bε(u)u] = Aε(u)∂xu, (4.1.12)

where (Aε
nk)1≤n,k≤N : RN

+ → RN×N is defined by

Aε
nn(u) := Bε

n(u) + un
f(n)

∑N
l=1(f(l)− f(n))ul

(ε+
∑N

l=1 f(l)ul)2
, 1 ≤ n ≤ N, (4.1.13)

Aε
nk(u) := un

ε(f(n)− f(k)) + f(n)
∑N

l=1(f(l)− f(k))ul

(ε+
∑N

l=1 f(l)ul)2
, 1 ≤ n ̸= k ≤ N. (4.1.14)

In these terms, PDEs (4.1.3) can be rewritten


∂tp = 1

2
∂x[σ2Aε(p)∂xp] + ∂x[

(
σ∂xσ + 1

2
σ2
)
Bε(p)p], (t, x) ∈ [0, T ]× R,

pn/P (Y = n) is a probability density,

pn(0, x) = Pn(x), x ∈ R, 1 ≤ n ≤ N.

(4.1.15)

We recall the following result of [67, Proof of Proposition 2.3, Corollary B.3].
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Proposition 4.1.2. Let

κ0 :=
1

2

N + 1− max
1≤k≤N

√√√√ N∑
n=1,n ̸=k

f(i)
N∑

n=1,n ̸=k

1

f(n)

 . (4.1.16)

Then for all δ > 0, η > 0, u ∈ (R∗
+)N , U ∈ 1R and V ∈ 1⊥, 1 = (1)1≤n≤N ,

⟨U + V, (J + δI)A0(u)(U + V )⟩ ≥ N

2

[
N − δ

(
1 +

fmax

fmin

)(
1 +

1

2η

)]
∥U∥22

+ δ

(
κ0 −N2

(
1 +

fmax

fmin

)
η

)
∥V ∥22,

(4.1.17)

where I = (1i=j)1≤i,j≤N and J = (1)1≤i,j≤N .

We prove the following result.

Proposition 4.1.3. Under Condition 4.0.1, there exist a matrix Γ ∈ S++ and κ > 0

such that for all u ∈ RN
+ and X ∈ RN

⟨X,ΓAε(u)X⟩ ≥ κ∥X∥22. (4.1.18)

Proof. If
∑N

n=1 un = 0 then Aε(u) = I and the result holds. Assume that
∑N

n=1 un > 0

and set

ρ :=

∑N
l=1 f(l)ul

ε+
∑N

l=1 f(l)ul
∈ [0, 1]. (4.1.19)

Rewrite

Aε
nn(u) = Bε

n(u) + un
f(n)

∑N
l=1(f(l)− f(n))ul

(ε+
∑N

l=1 f(l)ul)2

= 1− ρ+ ρB0
n(u) + ρ2un

f(n)
∑N

l=1(f(l)− f(n))ul

(
∑N

l=1 f(l)ul)2

= (1− ρ)(1 + ρB0
n(u)) + ρ2A0

nn(u),

(4.1.20)

107



and

Aε
nk(u) = un

ε(f(n)− f(k)) + f(n)
∑N

l=1(f(l)− f(k))ul

(ε+
∑N

l=1 f(l)ul)2

= ρ(1− ρ)
(f(n)− f(k))un∑N

l=1 f(l)ul
+ ρ2A0

nk(u).

(4.1.21)

Define the matrix D ∈ RN×N by

Dnk :=
(f(n)− f(k))un∑N

l=1 f(l)ul
, 1 ≤ n ̸= k ≤ N, (4.1.22)

and

Dnn := −
∑
m̸=n

Dmn =

∑N
m=1(f(n)− f(m))um∑N

l=1 f(l)ul
= B0

n(u)− 1, 1 ≤ n ≤ N. (4.1.23)

We see immediately that
∑N

n=1Dnk = 0, JD = 0, and that

max
1≤n,k≤N

|Dnk(u)| ≤ fmax − fmin

fmin

. (4.1.24)

In view of

(1− ρ)(1 + ρB0
n)−Dnn = (1− ρ)(1 + ρB0

n(u))− ρ(1− ρ)(B0
m(u)− 1) = 1− ρ2, (4.1.25)

we find that

Aε(u) = ρ2A0(u) + (1− ρ2)I + ρ(1− ρ)D. (4.1.26)

Set M := A0(u) − I. For all 1 ≤ k ≤ N ,
∑N

n=1Mnk = 0 according to [67, Proof of

Lemma 3.13] and therefore JM = 0. The previous equation can be written

Aε(u) = I + ρ2M + ρ(1− ρ)D. (4.1.27)

Exploiting the idea of [67, Proof of Proposition 2.3], we are going to show that for
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δ ∈ (0, 1) small enough, there exists κ > 0 such that for all X ∈ RN and u ∈ (R∗
+)N

⟨X, (J + δI)Aε(u)X⟩ ≥ κ∥X∥22. (4.1.28)

Let δ ∈ (0, 1) and X ∈ RN . We decompose

(J + δI)Aε(u) = J + δI + ρ2δM + ρ(1− ρ)δD. (4.1.29)

If ⟨X,MX⟩ ≤ 0, then using ρ ∈ [0, 1],

⟨X, (J + δI)Aε(u)X⟩ = ⟨X, (J + δI)X⟩+ ρ2δ⟨X,MX⟩+ ρ(1− ρ)δ⟨X,DX⟩

≥ ⟨X, (J + δI)X⟩+ δ⟨X,MX⟩+ ρ(1− ρ)δ⟨X,DX⟩

= ⟨X, (J + δI)A0X⟩+ ρ(1− ρ)δ⟨X,DX⟩.

(4.1.30)

If ⟨X,MX⟩ > 0 then

⟨X, (J + δI)Aε(u)X⟩ ≥ ⟨X, (J + δI)X⟩+ ρ(1− ρ)δ⟨X,DX⟩. (4.1.31)

Write X = U + V where U ∈ 1R and V ∈ 1⊥. Then DU = 0 and

⟨X,DX⟩ = ⟨V,DV ⟩+ ⟨U,DV ⟩. (4.1.32)

On the one hand,

⟨V,DV ⟩ =
N∑

n=1

DnnV
2
n +

N∑
n,k=1

un(f(n)− f(k))∑N
l=1 f(l)ul

VnVk

=
N∑

n=1

DnnV
2
n +

N∑
n,k=1

un((f(n)− f̄)− (f(k)− f̄))∑N
l=1 f(l)ul

VnVk

=
N∑

n=1

DnnV
2
n −

∑N
n,k=1 un(f(k)− f̄)VnVk∑N

l=1 f(l)ul
,

(4.1.33)
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where we used that
∑N

k=1 Vk = 0 between the second and third line.

We estimate∣∣∣∣∣
N∑

n,k=1

un(f(k)− f̄)VnVk

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

unVn

N∑
k=1

(f(k)− f̄)Vk

∣∣∣∣∣
≤

√√√√ N∑
n=1

u2n

√√√√ N∑
n=1

(f(n)− f̄)2∥V ∥22.

(4.1.34)

Using that un > 0 for 1 ≤ n ≤ N

√∑N
n=1 u

2
n∑N

l=1 f(l)ul
≤ 1

fmin

√√√√√ ∑N
n=1 u

2
n(∑N

l=1 ul

)2 ≤ 1

fmin

, (4.1.35)

we readily conclude that

ρ(1− ρ)δ⟨V,DV ⟩ ≥ −δβ(f)∥V ∥22. (4.1.36)

where β(f) :=

(
fmax−fmin

fmin
+ 1

fmin

√∑N
n=1(f(n)− f̄)2

)
,

On the second hand, for all η > 0

ρ(1− ρ)δ⟨U,DV ⟩ ≥ −δ max
1≤n,k≤N

|Dnk|N∥U∥2∥V ∥2

≥ −δβ(f)
√
N |∥U∥2∥V ∥2

≥ −δβ(f)N

η
∥U∥22 − δβ(f)N2η∥V ∥22.

(4.1.37)

Thus combining (4.1.36), (4.1.37) and Proposition 4.1.2, we infer in the case ⟨X,MX⟩ ≤

0

⟨X, (J + δI)Aε(u)X⟩ ≥ N

2

[
N − δ

[(
1 +

fmax

fmin

)(
1 +

1

2η

)
+

2β(f)

η

]]
∥U∥22

+ δ

(
κ0 − β(f)−N2

(
1 +

fmax

fmin

+ β(f)

)
η

)
∥V ∥22.

(4.1.38)
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Condition 4.0.1 yields κ0 > β(f) and we can choose

η < η− :=
1

2

(κ0 − β(f))

N2

(
1 +

fmax

fmin

+ β(f)

)−1

, (4.1.39)

and

δ < δ−(δ) :=
N[(

1 + fmax

fmin

)(
1 + 1

2η

)
+ 2β(f)

η

] . (4.1.40)

We check that with such choice, if ⟨X,MX⟩ ≤ 0

⟨X, (J + δI)Aε(u)X⟩ ≥ κ−∥X∥22, (4.1.41)

where

κ− := min

(
N

2

[
N − δ

[(
1 +

fmax

fmin

)(
1 +

1

2η

)
+

2β(f)

η

]]
,
δ

2
(κ0 − β(f))

)
> 0.

(4.1.42)

Now in the case where ⟨X,MX⟩ > 0

⟨X, (J + δI)Aε(u)X⟩ ≥ N

[
1− β(f)

δ

η

]
∥U∥22

+ δ
[
1− β(f)− β(f)N2η

]
∥V ∥22.

(4.1.43)

Therefore, under Condition 4.0.1, 1 > β(f), and we can choose

η < η+ :=
1

2

1− β(f)

β(f)N2
, (4.1.44)

and

δ < δ+(η) := ηβ(f). (4.1.45)

Thus

⟨U + V, (J + δI)Aε(u)(U + V )⟩ ≥ κ+∥X∥22, (4.1.46)
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where

κ+ := min

(
N

[
1− β(f)

δ

η

]
,
δ

2
[1− β(f)]

)
> 0. (4.1.47)

To conclude, take η < min(η−, η+) and δ < min(δ−(η), δ+(η)), to obtain

⟨X, (J + δI)Aε(u)X⟩ ≥ κ∥X∥22, (4.1.48)

where κ := min(κ−, κ+) > 0.

We are now ready to prove uniqueness.

Proposition 4.1.4. Under Condition 4.0.1, there exists at most one solution in C1+α/4,2+α/2

to Problem (4.1.3).

Proof. Let p and q be two solutions in (C1+α/4,2+α/2)N . By integrating by parts, we have

the estimate

∥∂xpn∥2L2 ≤ ∥∂xxpn∥L∞∥pn∥L1 , 1 ≤ n ≤ N (4.1.49)

we see that ∂xp, ∂xq ∈ C(0, T, L2)N .

Let Γ ∈ S++ and κ > 0 be given by Proposition 4.1.3, such that for all u ∈ (R+)N

⟨X,ΓAε(u)X⟩ ≥ κ∥X∥22. (4.1.50)

Set p′ =
√

Γp and q′ =
√

Γq. p′ and q′ are in C1+α/4,2+α/2, and their spatial gradient

in C(0, T, L2), and they solve respectively the system of PDEs


∂tp

′ = 1
2
∂x[σ2A′(p)∂xp

′] + +∂x[(σ∂xσ + 1
2
σ2)B′(p)p′], (t, x) ∈ [0, T ]× R,

p′n(0, x) =
√

ΓPn(x), x ∈ R, 1 ≤ n ≤ N,

(4.1.51)
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and
∂tq

′ = 1
2
∂x[σ2A′(q)∂xq

′] + ∂x[(σ∂xσ + 1
2
σ2)B′(q)q′], (t, x) ∈ [0, T ]× R,

q′n(0, x) =
√

ΓPn(x), x ∈ R, 1 ≤ n ≤ N,

(4.1.52)

where the operators A′ and B′ are respectively defined by A′(u) :=
√

ΓAε(u)
√

Γ
−1

and

B′(u) :=
√

ΓBε(u)
√

Γ
−1

, u ∈ (R+)N . A′ satisfies the same coercivity property as A.

Indeed, for all X ∈ R and u ∈ (R+)N

⟨
√

ΓX,
√

ΓAε(u)
√

Γ
−1√

ΓX⟩ = ⟨X,ΓAε(u)X⟩ ≥ κ∥X∥22 ≥ κ̃∥
√

ΓX∥22, (4.1.53)

where κ̃ := κ
N+δ

, (N + δ)−1 being the smallest eigenvalue of Γ−1.

Multiplying (4.1.51) by p′ − q′ and integrating gives for all t ∈ [0, T ]

∫
⟨p′ − q′, ∂tp′⟩ = −1

2

∫
⟨∂x(p′ − q′), A′(p)∂xp

′⟩

−
∫ (

σ∂xσ +
1

2
σ2

)
⟨∂x(p′ − q′), B′(p)p′⟩.

(4.1.54)

A similar equation holds for q′. Taking the difference with the previous equation and

integrating over [0, t] gives

1

2

∫
∥p′ − q′∥22 = −1

2

∫ t

0

∫
⟨∂x(p′ − q′), A′(p)∂xp

′ − A′(q)∂xq
′⟩dt

−
∫ t

0

∫ (
σ∂xσ +

1

2
σ2

)
⟨∂x(p′ − q′), B′(p)p′ −B′(q)q′⟩dt.

(4.1.55)

113



Rewrite the integrand of the first integral of the right-hand side as

⟨∂x(p′ − q′), A′(p)∂xp
′ − A′(q)∂xq

′⟩ = ⟨∂x(p′ − q′), A′(p)∂x(p′ − q′)⟩

+ ⟨∂x(p′ − q′), (A′(p)− A′(q))∂xq
′⟩

≥ −κ̃∥∂x(p′ − q′)∥22

− C∥q∥(C1+α/2,2+α)N∥∂x(p′ − q′)∥2∥A′(p)− A′(q)∥2.

(4.1.56)

Likewise for the second integral

σ∂xσ⟨∂x(p′ − q′), B′(p)p′ −B′(q)q′⟩ = σ∂xσ⟨∂x(p′ − q′), B′(p)(p′ − q′)⟩

+ σ∂xσ⟨∂x(p′ − q′), (B′(p)−B′(q))q′⟩

≥ −C∥∂x(p′ − q′)∥2∥p′ − q′∥2

− C∥q∥(C1+α/2,2+α)N∥∂x(p′ − q′)∥2∥B′(p)−B′(q)∥2,

(4.1.57)

where we used the boundedness of B′(p), σ and ∂xσ.

We check easily the existence of a constant C depending on Γ, fmax, fmin and ε such

that

∥A′(p)− A′(q)∥22 + ∥B′(p)−B′(q)∥22 ≤ C∥p′ − q′∥22. (4.1.58)

In the view of the upper-bounds

∥∂x(p′ − q′)∥2∥A′(p)− A′(q)∥2 ≤
κ

4
∥∂x(p′ − q′)∥22 +

4

κ
∥A′(p)− A′(q)∥22, (4.1.59)

∥∂x(p′ − q′)∥2∥p′ − q′∥2 ≤
κ

4
∥∂x(p′ − q′)∥22 +

4

κ
∥p′ − q′∥22, (4.1.60)

and

∥∂x(p′ − q′)∥2∥B′(p)−B′(q)∥2 ≤
κ

4
∥∂x(p′ − q′)∥22 +

4

κ
∥B′(p)−B′(q)∥22, (4.1.61)
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we conclude that for all t ∈ [0, T ] and some constant C > 0

∫
∥p′ − q′∥22 ≤ C∥q∥2(C1+α/4,2+α/2)N

∫ t

0

∫
∥p′ − q′∥22dt. (4.1.62)

Gronwall’s inequality yields p′ = q′ a.e. on [0, T ] × R and by continuity of p and q,

we have immediately that p = q.

4.2 Propagation of chaos

In this section, we prove the propagation of chaos and introduce an intermediate mollified

version of SDE (4.0.4). For each M ≥ 1, let (X̃ i,M
t )i≥1,t≥0 be a particle system such that

the i-th particle starts at X i
0 and evolves according to the dynamics



dX̃ i,M
t =− 1

2

ε+ f(Y i)
∑N

n=1WδM ∗ p̃n(t, X̃ i,M
t )

ε+
∑N

n=1 f(n)WδM ∗ p̃n(t, X̃ i,M
t )

σ(t, X̃ i,M
t )2dt

+

√√√√ε+ f(Y i)
∑N

n=1WδM ∗ p̃n(t, X̃ i,M
t )

ε+
∑N

n=1 f(n)WδM ∗ p̃n(t, X̃ i,M
t )

σ(t, X̃ i,M
t )dBi

t,

P
(
X̃ i,M

t ∈ dx ∩ Y i = n
)

= p̃n(t, x)dx,

, (4.2.1)

where we denote

WδM ∗ ϕ(x) =

∫
WδM (x− y)ϕ(y)dy, ϕ ∈ L2(R), x ∈ R. (4.2.2)

We introduce the PDE system associated to SDE (4.2.1)


∂tp̃ = 1

2
∂xx [σ2Bε(W ∗ p̃)p̃] + 1

2
∂x [σ2Bε(W ∗ p̃)p̃] , (t, x) ∈ [0, T ]× R,

p̃n(0, x) = Pn(x), x ∈ R,

1 ≤ n ≤ N.

. (4.2.3)
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The existence of (X̃ i,M
t )1≤i≤M,t≥0 is ensured by the following proposition.

Proposition 4.2.1. If (Pn)1≤n≤N satisfies the assumption of Theorem 4.0.2, then there

exists a strong solution (X̃ i,M
t , p̃(t, ·))t≥0 to SDE (4.0.11). Moreover, (p̃n)1≤n≤N belongs

to the space (C1+α/4,2+α/2)N ∩C(0, T, L2)N and there exists a constant C > 0 independent

of M and δM such that
N∑

n=1

∥p̃n∥C1+α/4,2+α/2 ≤ C, (4.2.4)

and

sup
0≤t≤T

∫
∥p̃− p̂∥22 ≤ CδM , ∀t ≥ 0. (4.2.5)

Proof. The existence of (p̃n)1≤n≤N and (X̃ i,M
t )t≥0, 1 ≤ i ≤M , can easily be established by

noticing that the mapping ϕ ∈ C1+α/4,2+α/2 7→ WδM ∗ u ∈ C1+α/4,2+α/2 is non-expansive

for the norm ∥ · ∥C1+α/4,2+α/2 and by using the techniques of the proof of Proposition 4.1.1

(see as well [65, Proposition 2.2]). The non-expansivity of the mentioned mapping makes

the estimate (4.1.7) still valid and independent of δM , and therefore (4.2.4) is justified.

In order to establish (4.2.5), we shall show that the proof of [65, Lemma 2.6] carries

to parabolic systems. Mimicking the computation of [65, Equation (2.8)], we can write

that the difference p̂− p̃ solves the system

∂t(p̂− p̃) =
1

2
∂x[Aε(p̂)∂x(p̂− p̃)] + a1∂x(p̂− p̃) + a2(p̂− p̃) + ϕ. (4.2.6)

where the matrix valued functions a1(t, x) and a2(t, x) are bounded, depend on p̂ and

p̃, and the vector valued function ϕ(t, x) depends on p̃ −W ∗ p̃ and its first and second

derivatives. Moreover, ϕ satisfies

N∑
n=1

sup
x∈R
|ϕn(x)| ≤ CδM , (4.2.7)

for some constant C > 0 independent of δM .

Next, we observe that under Condition 4.0.1, there exist Γ ∈ S++ and κ > 0 such
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that for all X ∈ RN

⟨X,ΓAε(p̂)X⟩ ≥ κ∥X∥22. (4.2.8)

Like in the proof of Proposition 4.1.4, set p̂′ =
√

Γp̂, p̃′ =
√

Γp̃, A′(p̂) =
√

ΓAε(p̂)
√

Γ
−1

,

a′1 =
√

Γa1
√

Γ
−1

, a′2 =
√

Γa2
√

Γ
−1

and ϕ′ =
√

Γϕ. With (4.1.53), there exists κ′ > 0 such

that for all X ∈ RN

⟨X,A′X⟩ ≥ κ′∥X∥22. (4.2.9)

Moreover

1

2

∫
∥p̂′ − p̃′∥22 =− 1

2

∫ t

0

∫
⟨∂x(p̂′ − p̃′), A′(p̂)∂x(p̂′ − p̃′)⟩dt

+

∫ t

0

∫
⟨p̂′ − p̃′, a′1∂x(p̂′ − p̃′)⟩dt+

∫ t

0

∫
⟨p̂′ − p̃′, a2(p̂′ − p̃′)⟩dt

+

∫ t

0

∫
⟨p̂′ − p̃′, ϕ′⟩dt.

(4.2.10)

Using the boundedness of a′1, a
′
2 and standard techniques, it is easy to see that for

some appropriate constant C > 0 and for all t ∈ [0, T ]

∫
⟨p̂′ − p̃′, a′1∂x(p̂′ − p̃′)⟩+

∫
⟨p̂′ − p̃′, a2(p̂′ − p̃′)⟩

≤ κ′

2

∫
∥∂x(p̂′ − p̃′)∥22 + C

∫
∥p̂′ − p̃′∥22.

(4.2.11)

In the view of the uniform coercivity of A′, and ϕ′, and the estimate

∫
⟨p̂′ − p̃′, ϕ′⟩ ≤ CδM

N∑
n=1

∫
(p̂n + p̃n) = CδM , (4.2.12)

we conclude that there exists some constant C > 0 such that for all t ∈ [0, T ]

1

2

∫
∥p̂′ − p̃′∥22 ≤ CδM + C

∫ t

0

1

2

∫
∥p̂′ − p̃′∥22dt. (4.2.13)

The result is proved by applying Gronwall’s inequality and using the obvious inequality
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∥p̂− p̃∥2 ≤ ∥p̂′ − p̃′∥2, for some constant C > 0 depending only on Γ and independent of

δM .

Let 1 ≤ i ≤M . To simplify the notation, we will drop the subscripts and superscripts

in i and M , and we denote δ = δM , W = WδM , X = X i, X̃ = X̃ i, X̂ = X̂ i, and for

j ̸= i, Xj = Xj,M and X̃j = X̃j,M . Denote WδM ∗ Xt(x) = 1
M

∑M
j=1WδM (x − Xj

t ) and

W f
δM
∗Xt(x) = 1

M

∑M
j=1 f(Y j)WδM (x−Xj

t ). Under this notation, the volatility coefficients

of X, X̃ and X̂ are respectively given by

Σt := f(Y )

√
ε+W ∗Xt(Xt)

ε+W f ∗Xt(Xt)
σ(t,Xt), (4.2.14)

Σ̃t :=

√√√√ε+ f(Y )
∑N

n=1W ∗ p̃n(t, X̃t)

ε+
∑N

n=1 f(n)W ∗ p̃n(t, X̃t)
σ(t, X̃t), (4.2.15)

and

Σ̂t :=

√
ε+ f(Y )

∑N
n=1 p̂n(t, X̂t)

ε+
∑N

n=1 f(n)p̂n(t, X̃t)
σ(t, X̂t). (4.2.16)

Notice immediately that

σ2
0

inf f

sup f
≤ Σ2, Σ̃2, Σ̂2 ≤ sup f

inf f
σ2
1. (4.2.17)

In the rest of the section, we denote, for notational simplicity, by C any constant

depending on N , ε, f , σ0, σ1, and |W1|∞.

The proof of Theorem 4.0.3 requires the Propositions 4.2.2 and 4.2.3 below.

Proposition 4.2.2. Let 1 ≤ i ≤M . Then for all T > 0.

E
[

sup
0≤t≤T

(X i,M
t − X̃ i,M

t )2
]
≤ C

M

exp (CTδ−4
M )

δ2M
. (4.2.18)
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Proof. According to the Burkholder–Davis–Gundy inequality, for any s ∈ [0, T ]

E
[

sup
0≤t≤s

(Xt − X̃t)
2

]
≤ CE

[
⟨X − X̃⟩s

]
= C

∫ s

0

E
[
(Σt − Σ̃t)

2
]
dt.

(4.2.19)

For x ∈ R and (U j)1≤j≤M ∈ RM , we abbreviate 1
M

∑M
j=1W (x−U j) by W ∗U(x) and

1
M

∑M
j=1 f(Y j)W (x− U j) by W f ∗ U(x).

The boundedness Σt, Σ̃t, σ and ∂xσ gives for all t ∈ [0, T ]

|Σt − Σ̃t| ≤ C|Σ2
t − Σ̃2

t |

≤ C

∣∣∣∣∣ε+W f ∗Xt(Xt)

ε+W ∗Xt(Xt)
− ε+

∑N
n=1 f(n)W ∗ p̃n(t, X̃t)

ε+
∑N

n=1W ∗ p̃n(t, X̃t)

∣∣∣∣∣
+ C|σ(t,Xt)− σ(t, X̃t)|

≤ C

∣∣∣∣∣ε+W f ∗X(Xt)

ε+W ∗Xt(Xt)
− ε+W f ∗Xt(Xt)

ε+
∑N

n=1W ∗ p̃n(t, X̃t)

∣∣∣∣∣
+ C

∣∣∣∣∣ ε+W f ∗X(Xt)

ε+
∑N

n=1W ∗ p̃n(t, X̃t)
− ε+

∑N
n=1 f(n)W ∗ p̃n(t, X̃t)

ε+
∑N

n=1W ∗ p̃n(t, X̃t)

∣∣∣∣∣
+ C|Xt − X̃t|

≤ C

∣∣∣∣∣W ∗Xt(Xt)−
N∑

n=1

W ∗ p̃n(t, X̃t)

∣∣∣∣∣
+ C

∣∣∣∣∣W f ∗Xt(Xt)−
N∑

n=1

f(n)W ∗ p̃n(t, X̃t)

∣∣∣∣∣+ C|Xt − X̃t|.

(4.2.20)

Let t ∈ [0, T ]. After estimating the term E
[∣∣∣W f ∗Xt(Xt)−

∑N
n=1 f(n)W ∗ p̃n(t, X̃t)

∣∣∣2],
we will apply the estimate with f = 1 to treat the term E

[∣∣∣W ∗Xt(Xt)−
∑N

n=1W ∗ p̃n(t, X̃t)
∣∣∣2].

Upper-bound

∣∣∣∣∣W f ∗Xt(Xt)−
N∑

n=1

f(n)W ∗ pn(t, X̃t)

∣∣∣∣∣ ≤ (I) + (II) + (III), (4.2.21)
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where each term (I), (II) and (III) is respectively defined by

(I) :=
∣∣∣W f ∗Xt(Xt)−W f ∗Xt(X̃t)

∣∣∣ , (4.2.22)

(II) :=
∣∣∣W f ∗Xt(X̃t)−W f ∗ X̃t(X̃t)

∣∣∣ , (4.2.23)

and

(III) :=

∣∣∣∣∣W f ∗ X̃t(X̃t)−
N∑

n=1

f(n)W ∗ p̃n(t, X̃t)

∣∣∣∣∣ . (4.2.24)

By using supx∈R |W ′(x)| ≤ C
δ2

, we find

E
[
(I)2
]

= E

( 1

M

M∑
j=1

E
[
f(Y j)(W (Xt −Xj

t )−W (X̃t −Xj
t ))
])2


≤ C

δ4
E
[
|Xt − X̃t|2

]
.

(4.2.25)

Likewise

E
[
(II)2

]
= E

( 1

M

M∑
j=1

f(Y j)(W (X̃t −Xj
t )−W (X̃t − X̃j

t ))

)2


≤ C

δ4M
E

[(
M∑
j=1

|Xj
t − X̃

j
t |2
)]

≤ C

δ4
E
[
|Xt − X̃t|2

]
,

(4.2.26)

where we used that by symmetry E
[
|Xj

t − X̃
j
t |2
]

= E
[
|Xt − X̃t|2

]
for all j = 1, . . . ,M .

By independence of the (X̃j
t )1≤j≤M and using that

N∑
n=1

f(n)W ∗ p̃n(t, x) = E
[
f(Y j)W (x− X̃j

t )
]
, 1 ≤ j ̸= i ≤ N, (4.2.27)
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we get

E [(III)2] =

∫
E

( 1

M

∑
j ̸=i

f(Y j)W (x− X̃j
t )− E

[
f(Y j)W (x− X̃j

t )
])2


×P
(
X̃t ∈ dx

)
.

(4.2.28)

Therefore

E
[
(III)2

]
≤ C

∫
E

( 1

M

∑
j ̸=i

(
f(Y j)W (x− X̃j

t )− E
[
f(Y j)W (x− X̃j

t )
]))2

P
(
X̃t ∈ dx

)
+

C

M2

∫
E
[
f(Y )W (x− X̃t)

]2
P
(
X̃t ∈ dx

)
.

(4.2.29)

Making use of the bound supx∈R |W (x)| ≤ C
δ

, we see that the second integral in the

right-hand side of (4.2.29) is dominated by

∫
E
[
f(Y )W (x− X̃t)

]2
P
(
X̃t ∈ dx

)
≤ C

∫
W (x− y)2P

(
X̃t ∈ dx

)
P
(
X̃t ∈ dy

)
≤ C

δ2
.

(4.2.30)

In estimating the first integral of (4.2.29), we utilize the independence of the (X̃j
t )1≤j≤N ,

for all x ∈ R, which gives

E

( 1

M

∑
j ̸=i

(
f(Y j)W (x− X̃j

t )− E
[
f(Y j)W (x− X̃j

t )
]))2


= Var

(
1

M

∑
j ̸=i

f(Y j)W (x− X̃j
t )

)

=
M − 1

M2
Var

(
f(Y )W (x− X̃t)

)
≤ C

Mδ2
.

(4.2.31)
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Putting together (4.2.25), (4.2.26) and (4.2.29)-(4.2.31), we infer

E

∣∣∣∣∣W f ∗Xt(Xt)−
N∑

n=1

f(n)W ∗ p̃n(t, X̃t)

∣∣∣∣∣
2
 ≤ C

Mδ2
+
C

δ4
E
[
|Xt − X̃t|2

]
. (4.2.32)

Taking f = 1 leads to the same estimate for E
[∣∣∣W ∗Xt(Xt)−

∑N
n=1W ∗ p̃n(t, X̃t)

∣∣∣2].
If we insert this in (4.2.20) and use (4.2.19), we obtain

E
[

sup
0≤s≤t

(Xs − X̃s)
2

]
≤ 1

M

C

δ2
+
C

δ4

∫ t

0

E
[

sup
0≤s≤r

(Xs − X̃s)
2

]
dr. (4.2.33)

Applying Gronwall’s inequality proves (4.2.18) and concludes the proof of the propo-

sition.

Proposition 4.2.3. Let 1 ≤ i ≤M . Then for some constant C > 0 independent of δ

E
[

sup
0≤t≤T

|X̃ i,M
t − X̂ i

t |2
]
≤ CδM . (4.2.34)

Proof. In the same manner of (4.2.20), for some constant C > 0

|Σ̃t − Σ̂t| ≤
C

δ

N∑
n=1

∣∣∣W ∗ p̃n(t, X̃t)− p̂n(t, X̂t)
∣∣∣+ C|X̃t − X̂t|. (4.2.35)

For all t ∈ [0, T ]

∣∣∣W ∗ p̃n(t, X̃t)− p̂n(t, X̂t)
∣∣∣ ≤ ∣∣∣W ∗ p̂n(t, X̂t)− p̂n(t, X̂t)

∣∣∣
+
∣∣∣W ∗ p̂n(t, X̃t)−W ∗ p̂n(t, X̂t)

∣∣∣
+
∣∣∣W ∗ p̃n(t, X̃t)−W ∗ p̂n(t, X̃t)

∣∣∣ .
(4.2.36)

Next, using the boundedness of the gradient of p̂n, we estimate the first two terms of
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the left-hand side of (4.2.36) as follows

∣∣∣W ∗ p̂n(t, X̂t)− p̂n(t, X̂t)
∣∣∣ ≤ sup

x∈R

∫
W1(y)|p̂n(t, x− δy)− p̂n(t, x)|dy

≤ δ∥p̂n∥C1+α/2,2+α

∫
|y|W1(y)dy,

(4.2.37)

and ∣∣∣W ∗ p̂n(t, X̃t)−W ∗ p̂n(t, X̂t)
∣∣∣ ≤ ∥p̂n∥C1+α/2,2+α|X̃t − X̂t|. (4.2.38)

Therefore, there exists a constant C > 0 independent of δ such that

∣∣∣W ∗ p̂n(t, X̂t)− p̂n(t, X̂t)
∣∣∣+∣∣∣W ∗ p̂n(t, X̃t)−W ∗ p̂n(t, X̂t)

∣∣∣ ≤ C(δ+|X̃t−X̂t|). (4.2.39)

For the last term of (4.2.36), write

E
[∣∣∣W ∗ p̃n(t, X̃t)−W ∗ p̂n(t, X̃t)

∣∣∣2] =
N∑

m=1

∫
|W ∗ (p̃n − p̂n)|2pm

≤ ∥p∥(C1+α/4,2+α/2)N

∫
|W ∗ (p̃n − p̂n)|2

≤ ∥p∥(C1+α/4,2+α/2)N

∫
|p̃n − p̂n|2

≤ ∥p∥(C1+α/4,2+α/2)N δ,

(4.2.40)

where we used Proposition 4.2.1.

Combining the previous estimate and (4.2.36) we deduce the existence of C > 0

independent of δ such that

E
[
|σ̃t − σ̂t|2

]
≤ C

(
δ2 + E

[
|X̃t − X̂t|2

])
. (4.2.41)

Burkholder–Davis–Gundy inequality and Gronwall’s inequality yield

E
[

sup
0≤t≤T

|X̃t − X̂t|2
]
≤ Cδ. (4.2.42)
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We are now ready for the proof of Theorem 4.0.3.

Proof of Theorem 4.0.3. According to Propositions 4.2.2 and 4.2.3 above, there exists a

constant C > 0 such that for all 1 ≤ i ≤ N

E
[

sup
0≤t≤T

(
X i,M

t − X̂ i,M
t

)2]
≤ C

M

exp (CTδ−4
M )

δ2M
+ CδM . (4.2.43)

It is enough to choose (δM)M≥1 such that limM→∞ δM = 0 and

lim
M→∞

1

M

exp (CTδ−4
M )

δ2M
= 0. (4.2.44)
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Chapter 5

Neural joint S&P 500/VIX smile

calibration

In this article we tackle the problem of jointly calibrating an arbitrage-free model on the

Standard & Poor’s 500 Index (SPX) to SPX options, Chicago Board Options Exchange’s

Volatility Index (VIX) futures, and VIX options. This is known to be a difficult problem,

especially for short maturities, which had eluded quants for many years (see [50]). While

parametric models have produced approximate fits (see, e.g., [3, 8, 9, 21, 36, 73, 96,

97, 39, 99]), the first exact solution1 came with the nonparametric discrete-time model

of [50], whose minimum-entropy technique can be seen as a nonlinear optimal trans-

port approach. This approach was later extended to continuous time to produce jointly

calibrating nonparametric diffusive models [43, 48]. In this article, we also consider over-

parametrized diffusive models to solve the joint calibration problem, but rather than

casting it as a nonlinear optimal transport problem, we solve it using neural stochastic

differential equations (SDEs).

Neural SDEs, which have been introduced or used in [108, 64, 60, 40, 23, 71], are

of the nonparametric (or overparametrized) type: they are SDEs whose drift and diffu-

sion coefficients are chosen to be neural networks, depending on potentially many more

1in the sense that, as opposed to a best parametric fit, the numerical method converges to an exact
fit
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parameters than there are options and futures to calibrate to. By the universal approx-

imation theorem for neural networks, neural SDEs have the potential of approximating

any SDE. By minimizing a loss function over the many parameters, we build a diffusive

model that solves the joint calibration problem accurately, often within bid-ask spreads

in our numerical tests. In this article we only consider two-dimensional Markovian neural

SDEs. The first component X is the log-spot, while the second component Y drives

the instantaneous volatility together with X. The main benefit of overparametrization

is that it offers a lot of flexibility; the main drawback of our approach is the lack of

interpretability of the parameters and of process Y . Note, however, that even in popular

stochastic volatility models, such as the Bergomi models, the instantaneous volatility is

modeled as a function of (typically, Ornstein-Uhlenbeck) factors that do not have a clear

financial interpretation either.

Our main contribution is that we show that a general one-factor stochastic local

volatility (SLV) model can solve the joint calibration problem accurately, often within bid-

ask spreads in our numerical tests, provided we allow for enough flexibility on the drift and

diffusion coefficients, all functions of (t,Xt, Yt). Note that [43] uses an (n+1)-dimensional

SDE, where n is the number of calibrated VIX expiries, while the Schrödinger bridge

approach of [48] requires fine-tuning the volatility-of-volatility coefficient, which is not

optimized upon. Our model shows that the joint calibration problem can be accurately

solved with a two-dimensional Markovian SDE, regardless of the number of calibrated

VIX expiries, and with no need of choosing a volatility-of-volatility. Interestingly, the

joint calibration actually forces the SLV model to be a pure path-dependent volatility

(PDV) model, confirming the findings in [49]: the “spot-vol” correlation is pushed to

its lower bound −1. PDV models have recently been shown to be good candidates for

approximately solving the joint calibration problem [39, 55].

The natural practical application of our model is the pricing and hedging of struc-

tured products by exotics desks. With this model, the pricing and hedging of structured

products on the SPX indeed takes into account the whole information given by SPX
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smiles (the risk-neutral distributions of future SPX values) as well as the whole infor-

mation brought by VIX futures and VIX smiles (the risk-neutral distributions of some

future SPX implied volatilities). Once the model is calibrated overnight (3 hours in our

tests), it is extremely simple to implement and use, as it is a Markov model in very low

dimension (two).

The rest of this chapter is structured as follows. We describe our neural SDE model

in Section 5.1. The neural joint calibration procedure is explained in Section 5.2. Fi-

nally, implementation details and numerical results are reported in Sections 5.3 and 5.4

respectively.

This chapter is based on [56].

5.1 The model

Let (T s
j )1≤j≤Ns

T
(resp. (T v

j )1≤j≤Nv
T
) be a collection of ordered SPX (resp. VIX) options

expiries. Define

T = max(T s
Ns

T
, T v

Nv
T

+ τ), (5.1.1)

where τ = 30
365

(30 days). We aim at building a model that jointly calibrates the SPX

smiles at (T s
j )1≤j≤Ns

T
and the VIX futures and the VIX smiles at (T v

j )1≤j≤Nv
T
. Let (St)t≥0

denote the price of the SPX. We assume deterministic interest rates rt and repo qt,

inclusive of dividend yield, and for u ≥ t we denote by

ft,u := St exp

(∫ u

t

(rs − qs)ds
)
, (5.1.2)

the SPX u-forward at time t. We denote by X = (logSt/f0,t)t≥0 the log-price.

We consider a general SLV model. Denote Y a stochastic process driving the volatility

together with X. The SLV model is initialized at (0, 0) at time 0 and follows the following
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risk-neutral dynamics for t ∈ [0, T ]:


dXt = −1

2
σX(t,Xt, Yt)

2dt+ σX(t,Xt, Yt)dB
1
t ,

dYt = µY (t,Xt, Yt)dt+ σY (t,Xt, Yt)
(
ρ(t,Xt, Yt)dB

1
t

+
√

1− ρ(t,Xt, Yt)2dB
2
t

) , (M)

where (B1
t )t≥0 and (B2

t )t≥0 are two independent Brownian motions, σX is the volatility

of the log-price, µY is the drift of Y and σY the volatility of Y , and ρ is the correlation

between the two Brownian motions driving the dynamics of X and Y .

In this Markov model, with classical notations, the VIX2 at t is given by

VIX2
t := −2

τ
E
[

log
St+τ

ft,t+τ

∣∣∣∣Ft

]
= −2

τ
E [Xt+τ −Xt| Ft]

= E [Rt|Xt, Yt] =: v(t,Xt, Yt),

where Rt

Rt :=
1

τ

∫ t+τ

t

σX(s,Xs, Ys)
2ds. (5.1.3)

is the realized variance over the 30-day period. The VIX is defined by VIXt =
√

VIX2
t .

5.2 Neural calibration

Let DSPX
j = {(k, ISPX(T s

j , k)) : k ∈ KSPX
j } be a collection of strikes and out-the-money

(OTM) implied volatilities2 for the SPX at T s
j . Similarly, let DVIX

j = {(k, CVIX(T v
j , k),

PVIX(T v
j , k), IVIX

j (T v
j , k)) : k ∈ KVIX

j } be a collection of target strikes, call prices, put

prices, and OTM implied volatilities for the VIX at T v
j ; the market VIX future at T v

j

is denoted fVIX(T v
j ); P (t) = exp

(
−
∫ t

0
rsds

)
denotes the price of the zero coupon of

maturity t ≥ 0.

For each strike k and maturity t, we define the price of the call and put of strike k

2By OTM implied volatility we mean the implied volatility of the OTM call or put option. The
forward value is computed via call-put parity so that implied volatilities behave smoothly around the
money.

128



and maturity t, respectively, under model (M) as

CSPX
m (t, k) = P (0, t)E [(St − k)+] ,

P SPX
m (t, k) = P (0, t)E [(k − St)+]

(5.2.1)

and we denote by ISPXm (t, k) the associated OTM implied volatility. Similarly, we denote

the prices of call and put options on the VIX for strike k and maturity t by

CVIX
m (t, k) = P (0, t)E [(VIXt − k)+] ,

PVIX
m (t, k) = P (0, t)E [(k − VIXt)+] .

(5.2.2)

The model price of the VIX future expiring at t is defined as fVIXm(t) = E [VIXt]. In

order to jointly calibrate Model (M) to the smiles (DSPX
j )1≤j≤Ns

T
and (DVIX

j )1≤j≤Nv
T

and

to VIX futures, we look for

σX , µY , σY , ρ ∈ argminL(σX , µY , σY , ρ), (5.2.3)

129



where the loss L is defined by

L(σX , µY , σY , ρ) = wfVIX
1

N v
T

Nv
T∑

j=1

(
fVIXm(T v

j )

fVIX(T v
j )
− 1

)2

+ wSPX
1

N s
T

Ns
T∑

j=1

1

|DSPX
j |

×
∑

k∈KSPX
j

∆SPX(T s
j , k)

(
ISPXm (T s

j , k)

ISPX(T s
j , k)

− 1

)2

+ wVIX
1

N v
T

Nv
T∑

j=1

1

|DVIX
j |

×
∑

k∈KVIX
j

k>fVIXm(T v
j )

∆VIX(T v
j , k)

(
CVIX

m (T v
j , k)

CVIX(T v
j , k)

− 1

)2

+ wVIX
N v

T

Nv
T∑

j=1

1

|DVIX
j |

×
∑

k∈KVIX
j

k≤fVIXm(T v
j )

∆VIX(T v
j , k)

(
PVIX
m (T v

j , k)

PVIX(T v
j , k)

− 1

)2

,

(5.2.4)

for some positive weights w = (wfVIX, wSPX, wVIX). Small bid-ask spreads are given more

importance through the weights

∆SPX(T s
j , k) =

δSPX(t, k)∑
l∈KSPX

j
δSPX(t, l)

,

∆VIX(T v
j , k) =

δVIX(t, k)∑
l∈KVIX

j
δVIX(t, l)

(5.2.5)

where δSPX(t, k) (resp. δVIX(t, k)) denotes the inverse of the bid-ask spread of the OTM

implied volatility ISPX(t, k) (resp. IVIX(t, k)). Notice that we calibrate the VIX OTM

call and put prices instead of the VIX implied volatilities. Indeed, model VIX futures are

needed to compute model VIX implied volatilities, and it makes no sense to minimize the

relative error of the VIX implied volatilities when the model and market VIX futures do

not closely match.
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5.2.1 Loss approximation

We approximate the loss L by discretizing in time SDE (M) via the Euler-Maruyama

method. Let N ≥ 1 be the number of Monte Carlo paths and ∆t > 0 be the time step.

Denote tn = n∆t, n ∈ N. We choose ∆t = 1
q×365

where q is an integer so that the ma-

turities T s
j , T

v
j ∈ ∆tN. Let

(
∆B1,i

tn

)
1≤i≤N,0≤tn≤T

and
(
∆B2,i

tn

)
1≤i≤N,0≤tn≤T

be independent

samples of the distribution N (0,∆t).

Model (M) is approximated by the following scheme for tn < T and 1 ≤ i ≤ N



X i
tn+1

= X i
tn −

1
2
σX(tn, X

i
tn , Y

i
tn)2∆t+ σX(tn, X

i
tn , Y

i
tn)∆B1,i

tn ,

Y i
tn+1

= Y i
tn + µY (tn, X

i
tn , Y

i
tn)∆t

+ σY (tn, X
i
tn , Y

i
tn)
[
ρ(tn, X

i
tn , Y

i
tn)∆B1,i

tn

+
√

1− ρ(tn, X i
tn , Y

i
tn)2∆B2,i

tn

]
,

(X i
0, Y

i
0 ) = (0, 0).

(5.2.6)

Setting the stock price Si
tn := f0,tne

Xi
tn , the call and put prices are approximated by the

Monte Carlo estimators3

ĈSPX
m (tn, k) =

1

N

N∑
i=1

(Si
tn − k)+,

P̂ SPX
m (tn, k) =

1

N

N∑
i=1

(k − Si
tn)+.

(5.2.7)

We denote by ÎSPXm (tn, k) the associated model OTM implied volatility.

In this discrete-time approximation, the realized variance is given by

Ri
tn =

∆t

τ

∑
tn≤tm<tn+τ

σX(tm, X
i
tm , Y

i
tm)2, (5.2.8)

3Other Monte Carlo schemes, reducing the variance of the estimator, could of course be used here.
For the sake of simplicity, we use this basic MC estimator.
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and the VIX2 is defined by

VIX2
tn,i = E

[
Ri

tn|X
i
tn , Y

i
tn

]
, 1 ≤ i ≤ N. (5.2.9)

Let V̂IX2
tn,i be an estimator of VIX2

tn,i and define

V̂IXtn,i :=

√
V̂IX2

tn,i. (5.2.10)

The VIX call and put prices are estimated by

ĈVIX
m (tn, k) =

1

N

N∑
i=1

(
V̂IXtn,i − k

)
+
,

P̂VIX
m (tn, k) =

1

N

N∑
i=1

(
k − V̂IXtn,i

)
+

(5.2.11)

and the VIX future price is estimated by

f̂VIXm(tn) =
1

N

N∑
i=1

V̂IXtn,i. (5.2.12)

The loss function L in (5.2.4) is thus approximated by L̂(σX , µY , σY , ρ), which is

defined as in (5.2.4) with fVIXm, ISPXm , CVIX
m and PVIX

m replaced by f̂VIXm, ÎSPXm , ĈVIX
m ,

P̂VIX
m , respectively and the discretized minimization problem reads

σX , µY , σY , ρ ∈ argmin L̂(σX , µY , σY , ρ). (P)

5.2.2 Neural parameterization and minimization of L̂

In order to tackle the minimization problem (P), we apply a gradient descent algorithm

and parameterize (σX , µY , σY , ρ) by neural networks. More precisely, let θ be a collection
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of weights. Let Φθ : R3 → R4

Φθ :


t

x

y

 ∈ R3 7−→



Φ1
θ(t, x, y)

Φ2
θ(t, x, y)

Φ3
θ(t, x, y)

Φ4
θ(t, x, y)


∈ R4. (5.2.13)

be a neural network with r hidden layers of size l and weights θ. The volatility of X and

Y being positive, and the correlation ρ lying in [−1, 1], we choose



σX = 1 + tanh(Φ1
θ),

σY = 1 + tanh(Φ2
θ),

µY = Φ3
θ,

ρ = tanh(Φ4
θ).

(5.2.14)

Note that as a consequence we enforce that σX and σY do not exceed 2.4

In order to apply a gradient descent algorithm, we need to compute the gradients ∂θL̂.

To this end, it is enough to compute the gradients ∂cÎ
SPX
m (t, k), ∂θX

i
t , and ∂θV̂IXt,i. The

gradient ∂cI
SPX
m (t, k) is computed by using the inverse function rule. We use backprop-

agation through iterations (5.2.6) to compute ∂θX
i
t .
5 The computation of the gradients

∂θV̂IXt,i is examined in the next section.

5.2.3 Differentiable VIX2 estimator.

In order to use a gradient descent algorithm for the minimization of L̂, we need to estimate

the VIX in an efficient and differentiable way; in particular, we need to be able to compute

4We could have considered σY = α(1 + tanh (Φ2
θ)), where α is a trainable weight. This would allow

arbitrary large values for the volatility of Y . However, we notice numerically that taking α = 1 is enough
to jointly calibrate the SPX and VIX smiles. Using σY > 2 is not desirable as it may produce MC
estimators with a very large variance.

5Backpropagation requires O(l) memory space and takes O (l) time, where l = T
∆t is the number of

time steps in the Euler-Maruyama scheme (5.2.6). A more memory-efficient approach in O(1) memory
space and O(l log l) in time can be applied by following an adjoint method [71, 84]. However, this method
requires smaller time steps.
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∂θV̂IXt,i. Various methods are available to estimate

VIX2
tn,i := E

[
Ri

tn| X
i
tn , Y

i
tn

]
. (5.2.15)

� Kernel regression. For W : R→ R+ a kernel and hX , hY > 0 two bandwidths, a

VIX2 estimator is given by

V̂IX2
t,i =

∑N
j=1R

j
tWij∑N

j=1Wij

, Wij := W ((X i
t−X

j
t )2/hX +(Y i

t −Y
j
t )2/hY )). (5.2.16)

Optimal bandwidths are typically chosen by cross-validation to ensure the best

tradeoff between bias and variance. Kernel methods implemented using the classical

acceleration techniques [54] are extremely efficient in one dimension, but the curse

of dimensionality decreases their efficiency in higher dimensions and may lead to

high-variance estimators.

� Linear least squares. Let d ∈ N and Rd[X, Y ] = {[XkY l]0≤k+l≤d ·α : α ∈ Rm} be

the space of bivariate polynomials of degree at most d, m being the dimension of

this real vector space and [XkY l]0≤k+l≤d ·α denoting the polynomial with coefficients

α, namely
∑

k+l≤d αk,lX
kY l. The VIX2 estimator minimizing the quadratic error is

given by

V̂IX2
t,i = [(X i

t)
k(Y i

t )l]0≤k+l≤d · α∗, (5.2.17)

where

α∗ ∈ argminα∈Rm

1

N

N∑
i=1

(
Ri

t − [(X i
t)

k(Y i
t )l] · α∗)2 . (5.2.18)

This method is memory efficient and the estimator has a low variance, by appro-

priately solving the normal equation ATAα = ATR where R = (Ri
t)1≤i≤N and

A = [(X i
t)

k(Y i
t )l]1≤i≤N,0≤k+l≤d ∈ RN×m. (5.2.19)
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Indeed, let A = QS be the QR decomposition of A, Q being orthogonal and S

upper triangular. A solution α∗ is given by solving the triangular equation

Sα∗ = QTR. (5.2.20)

Computing the QR decomposition and solving triangular equations are numerically

stable operations and can be made differentiable. Notice that solving the normal

equation by inverting the matrix ATA + εIN requires choosing the regularization

parameter ε > 0 (again by cross-validation for example). The choice of a basis of

monomials is arbitrary; other orthogonal polynomials or transformations of X and

Y can be used.

� Nested Monte Carlo. Let M ∈ N∗. The nested Monte Carlo estimator is

V̂IX2
t,i =

1

M

M∑
j=1

Rj
t (X

i
t , Y

i
t ) (5.2.21)

where (Rj
t (x, y))1≤j≤M are M independent samples of the realized variance given

that (X i
t , Y

i
t ) = (x, y). This estimator is numerically stable and for large enough

M has very low variance. However, it requires a lot of computational resources.

The nested Monte Carlo methods can be made differentiable by backpropagating

the gradients through the scheme (5.2.6).

� Partial differential equation. Notice that

VIX2
t (x, y) = −2

τ
(E [Xt+τ |Xt = x, Yt = y]− x) . (5.2.22)
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The conditional expectation E [Xt+τ |Xt, Yt] can be computed by solving the bidi-

mensional backward parabolic equation


∂tu+ 1

2
σ2
X∂

2
xxu+ 1

2
σ2
Y ∂

2
yyu+ 2ρσXσY ∂

2
xyu− 1

2
σ2
X∂xu+ µY ∂yu = 0,

u(t+ τ, x, y) = x,

(5.2.23)

This equation can be solved numerically by alternating direction implicit (ADI)

method for example (see [35]). This method is the most accurate and can be

made differentiable by computing the gradients through the solver. However, the

algorithm is computationally intensive and requires the crucial selection of the dis-

cretizing grid and boundary conditions.

We find that a good compromise between accuracy and memory usage is to choose

the least squares method. The advantages of this method over nested Monte Carlo

have already been highlighted in Guo and Loeper [41]. Their work gives confidence

bounds for VIX futures and VIX options by computing simultaneously estimators of

VIX2
t = E [Rt|Xt, Yt] and of the stochastic integral R−E [Rt|Xt, Yt], which represents the

model hedging strategy. While we were able to reproduce their numerical results for the

Heston model, we could not obtain tight bounds for our neural SDE model. Therefore,

once our model has been calibrated, in order to check the accuracy of the least squares

method, we compare the VIX and VIX smile obtained with the least squares method

with those estimated with the (slow) nested Monte Carlo algorithm, which is known to

be very accurate as soon as N and M are large enough.

Remark 5.2.1. Contrary to nested Monte Carlo, least squares can lead to negative VIX2

estimates. For the calibrated model, this happens in less than 0.01% of the simulated

paths. To deal with this issue, one can clip V̂IX
2

t,i by a small positive value h and define

the estimator

V̂IX2
t,i = max

(
h, α∗ · [(X i

t)
k(Y i

t )l]0≤k+l≤d

)
. (5.2.24)

This solution implies the arbitrary choice of h. We rather use filtering. An expectation
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E [G(VIXt)] is estimated by

Ê [G(VIXt)] =
1

|I|
∑
i∈I

G

(√
V̂IX2

t,i

)
, (5.2.25)

where I := {1 ≤ i ≤ N : V̂IX2
t,i > 0}. For our joint calibration problem, both methods

induce a very small bias for the estimator (see Figure 5.5.2).

5.2.4 Algorithms

In this section, we provide the main algorithms used to calibrate Model (M): the training

loop and the differentiable VIX computation, respectively described in Algorithms 2 and

1. For brevity, we assume the existence of the following procedures.

1. (Xtn , ∂θXtn , Ytn , ∂θYtn , Rtn , ∂θRtn)0≤tn≤T ←− Euler(∆t, T,X0, Y0, θ,∆B1,∆B2).

The inputs are a step size ∆t, a final time T , N initial data (X0, Y0) = (X i
0, Y

i
0 )1≤i≤N

at time 0, the weights θ of the neural network Φθ and Brownian increments ∆B1 and

∆B2. The procedure returns the value of X, Y at times tn = n∆t and the realized

variance R (5.2.8), along with the gradients of these quantities with respect to

θ, after T
∆t

iterations of Euler-Maruyama scheme (5.2.6) with the previous input

parameters. The gradients are computed efficiently by backpropagation through

the solver.

2. θ ←− GradientDescent(θ, ∂θL, lr).

This procedure updates the weights θ along the gradients ∂θL, with learning rate

lr and according to a gradient descent stepper (stochastic gradient descent, Adam,

Adagrad, etc.).

3. Q, ∂AQ,S, ∂AS ←− DecompositionQR(A).

It computes the QR decomposition of a matrix A and the gradients ∂AQ and ∂AS.

4. x, ∂Ax, ∂bx←− SolveTriangular(A, b).
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It solves the triangular equation Ax = b with unknown x and the gradients ∂Ax

and ∂bx of the solution x with respect to A and b.

5. L, ∂θL← ComputeL(T, (Xtn , ∂θXtn)0≤tn≤T , (V̂IXT v
j
, ∂θV̂IXT v

j
)1≤j≤Nv

T
, w).

Finally, this function computes the loss and its gradient with respect to θ. Its

implementation is only a matter of differentiating directly L̂.

Algorithm 1 describes the differentiable VIX computation by polynomial regression.

The input d is the degree of the polynomials in the linear regression. The output are the

estimated VIX and estimated gradients ∂θVIX.

Algorithm 1 Differentiable VIX least squares estimator

function computeVIX(Xt, ∂θXt, Yt, ∂θYt, Rt, ∂θRt, d)

A← [X ik
t Y

il
t ]1≤i≤N,0≤k+l≤d

Q, ∂AQ,S, ∂AS ← DecompositionQR(A)

α∗, ∂Sα
∗, ∂QTRα

∗ ← SolveTriangular(S,QTRt)

∂θα
∗ ← ∂θA

[
∂AS∂Sα

∗ + ∂AQ
TRt∂QTRα

∗]
VIX2 ← α∗ · A

∂θVIX2 ← α∗∂θA+ ∂θα
∗A

VIX, ∂θVIX←
√

VIX2, ∂θVIX2

2
√
VIX2

return VIX, ∂θVIX

end function

Algorithm 2 describes the training of the model. Its inputs are the weight of Φθ, the

time step ∆t, the weight w = (wfVIX, wSPX, wVIX) for the loss L̂, the degree d of the

polynomials in linear regression (5.2.17), the learning rate lr of the gradient descent and

Brownian increments ∆B1 = (∆B1,i
tn )1≤i≤N,0≤tn≤T and ∆B2 = (∆B2,i

tn )1≤i≤N,0≤tn≤T . The

output is the updated weight θ.
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Algorithm 2 Training step

function Train(θ,N,∆t, w, d, lr,∆B1,∆B2)

(Xtn , ∂θXtn , Ytn , ∂θYtn , Rtn , ∂θRtn)0≤tn≤T ← Euler(∆t, T, 0, 0, θ,∆B1,∆B2).

for j ← 1 to N v
T do

V̂IXT v
j
, ∂θV̂IXT v

j
← ComputeVIX(XT v

j
, ∂θXT v

j
, YT v

j
, ∂θYT v

j
, RT v

j
, ∂θRT v

j
, d)

end for

L, ∂θL← ComputeL(T, (Xtn , ∂θXtn)0≤tn≤T , (V̂IXT v
j
, ∂θV̂IXT v

j
)1≤j≤Nv

T
, w).

θ ← GradientDescent(θ, ∂θL, lr)

return θ

end function

5.3 Numerical implementation and data

In this section we provide details of the implementations of Algorithms 1 and 2. Market

data was obtained from the IvyDB Optionmetrics database, available through Wharton

Research Data Service.6

We used Pytorch and Nvidia Tesla V100 GPUs for auto-differentiation and backprop-

agation. The Euler procedure is implemented using the torchsde library [71, 84]. The

number of Monte Carlo paths is N = 150, 000 and the time step is ∆t = 0.5/365 (half

a day). Φθ is a feedforward neural network with r = 1 hidden layer of width l = 16.

We recall that the activation functions for the hidden layers are hyperbolic tangents and

that the output layer is taken without activation. We use the Adam algorithm to perform

the gradient descent. The learning rate lr is taken equal to 0.001. Implied volatilities

are computed by solving a root finding problem using Brent’s method. The choice of

the weights w = (wfVIX, wSPX, wVIX) is crucial. The VIX future should be very precisely

calibrated since it is the underlying of VIX options, and also for the comparison of model

and market VIX implied volatilities to be meaningful. Therefore, wfVIX should be rela-

6https://wrds-www.wharton.upenn.edu/login/?next=/pages/get-data/optionmetrics/

ivy-db-us/options/option-prices/
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tively large. The weights are taken as (wfVIX, wSPX, wVIX) = (30, 2, 3). The degree of the

polynomial for the VIX2 regression was taken to be d = 8; both too low a degree (large

bias, underfitting) and too high a degree (large variance, overfitting) may lead to a poor

VIX2 estimation.

Finally, the nested Monte Carlo VIX2 estimator used M = 15, 000 nested paths and

the Monte Carlo estimators of VIX payoffs are computed with N ′ = 20, 000 trajectories.

The code is available online. 7

5.4 Numerical results

We calibrate to market data as of October 1, 2021. We consider respectively N s
T = 8 and

N v
T = 8 weekly and monthly SPX and VIX maturities listed below in Figures 5.5.1 and

5.5.2, spanning 9 months of SPX options and 6 months of VIX options.8 On each figure,

the market bid-ask is plotted. The SPX smiles and the VIX futures and VIX smiles are

well calibrated, often within bid-ask spreads. In Figure 5.5.2, the calibrated VIX smiles

are computed using the nested Monte Carlo estimator (5.2.21). The figure also allows us

to verify the accuracy the least squares estimator (5.2.17).

The surfaces of the calibrated σX(t, ·, ·), σY (t, ·, ·), µY (t, ·, ·) and ρ(t, ·, ·) are plotted in

Figures 5.5.3, 5.5.4 and 5.5.5 for t = October 13, 2021, November 13, 2021 and January

13, 2022, respectively. The red scatter plot on the surface shows the values taken at MC

samples (X i
t , Y

i
t )1≤i≤N defined by (5.2.6). The SPX volatility σX is mostly an increasing

function of Y , so Y plays a role similar to the instantaneous volatility σX , but it also

depends on X— it mostly decreases with X. The volatility of Y , σY is saturated at 2. We

deliberately capped σY at 2 to control the variance of MC estimators and see if market

data could be calibrated without pushing the “vol-of-vol” σY too high. The correlation ρ

is thus −1 almost everywhere, so as to match the large negative SPX market skews; the

7https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https:

//github.com/intermet/neural-spx-vix-calibration-sh
8Our data set does not contain option data with longer maturities.

140

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/intermet/neural-spx-vix-calibration-sh
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/intermet/neural-spx-vix-calibration-sh


0.0 0.1 0.2 0.3 0.4 0.5 0.6
time (in year)

50

75

100

125

150

175

200

225

m
ea

n 
re

ve
rs

io
n 

st
re

ng
th

0.0 0.1 0.2 0.3 0.4 0.5 0.6
time (in year)

0.15

0.20

0.25

0.30

0.35

lo
ng

 te
rm

 m
ea

n

Figure 5.4.1: Left: time-dependent mean reversion, defined as the slope of y 7→ µY (t, 0, y)
at the value yt such that µY (t, 0, yt) = 0. Right: long-term mean of volatility t 7→
σX(t, 0, yt)

fact that σX decreases with X contributes as well. Therefore only one Brownian motion

drives (most of) the model dynamics and the model is (almost) purely path-dependent.

This confirms the findings in [49], and that PDV models are natural candidates for solving

the joint calibration problem [39, 55]. The drift µY is essentially a fast decreasing linear

function of Y : our neural SDE procedure learns (from scratch) that the volatility factor

Y is fast mean-reverting, with a time-dependent characteristic scale of mean reversion

varying from around 2 days (for small t) to around 7 days (for t around 6 months); see

Figure 5.4.1. Since our neural net takes directly (t, x, y) as input and only uses smooth

activation functions, the surfaces are smooth and vary smoothly with time.

When we initialize the neural network with random weights, the calibration takes

a long time (36 hours). However, initializing the neural network with the parameters

calibrated on the day before greatly speeds up the calibration process, which then takes

only around 3 hours to calibrate on the next business day; the calibration can thus

run overnight. The computation time is also reduced by considering less maturities.

To calibrate to one monthly VIX maturity (October 20, 2021) and two monthly SPX

maturities (October 15 and November 19, 2021), only 4 hours are needed with random

initialization (compared to 11 hours reported in [43]).
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5.5 Conclusion

In this chapter, we have shown that a one-factor SLV model can jointly calibrate to

SPX and VIX smiles and VIX futures for many maturities, provided enough flexibility is

allowed on the SDE coefficients, which we model as neural networks. The calibrated model

is actually a one-factor PDV model with a fast mean-reverting path-dependent factor Y

which depends only on past SPX returns. Our work thus illustrates the expressivity of

neural SDEs by solving the joint calibration problem with good accuracy for multiple

maturities, and provides yet extra reasons to use PDV models for pricing, hedging, and

risk-managing derivatives.
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Figure 5.5.1: Calibration of the SPX smiles as of October 1, 2021.
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Figure 5.5.2: Calibration of the VIX futures and VIX smiles as of October 1, 2021.
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Figure 5.5.3: Plots of the optimal σX , σY , µY , ρ at time t = October 13, 2021, as of
October 1, 2021.
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Figure 5.5.4: Plots of the optimal σX , σY , µY , ρ at time t = November 13, 2021, as of
October 1, 2021.
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Figure 5.5.5: Plots of the optimal σX , σY , µY , ρ at time t = January 13, 2022, as of
October 1, 2021.
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[41] Ivan Guo and Grégoire Loeper. Pricing bounds for volatility derivatives via duality

and least squares Monte Carlo. Journal of Optimization Theory and Applications,

179(2):598–617, 2018.
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model. Journal of Banking & Finance, 96:185–206, 2018.

[97] Andrew Papanicolaou and Ronnie Sircar. A regime-switching heston model for vix

and s&p 500 implied volatilities. Quantitative Finance, 14(10):1811–1827, 2014.

[98] Leonard CG Rogers and Zhan Shi. Interacting brownian particles and the wigner

law. Probability theory and related fields, 95:555–570, 1993.

[99] Mathieu Rosenbaum and Jianfei Zhang. Deep calibration of the quadratic rough

heston model. Risk, October 2022.

[100] Laura Sacerdote and Maria Teresa Giraudo. Stochastic integrate and fire mod-

els: a review on mathematical methods and their applications. Stochastic

159



biomathematical models: with applications to neuronal modeling, pages 99–148,

2013.

[101] Edward B Saff and Vilmos Totik. Logarithmic potentials with external fields, vol-

ume 316. Springer Science & Business Media, 2013.

[102] Etienne Sandier and Sylvia Serfaty. Vortices in the magnetic Ginzburg-Landau

model, volume 70. Springer Science & Business Media, 2008.

[103] Yuri F Saporito, Xu Yang, and Jorge P Zubelli. The calibration of stochastic local-

volatility models: An inverse problem perspective. Computers & Mathematics with

Applications, 77(12):3054–3067, 2019.

[104] Bernard Sherman. A general one-phase stefan problem. Quarterly of Applied

Mathematics, 28(3):377–382, 1970.

[105] Volker Strassen. An invariance principle for the law of the iterated logarithm.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 3(3):211–226,

1964.

[106] Alain-Sol Sznitman. Topics in propagation of chaos. Lecture notes in mathematics,

pages 165–251, 1991.

[107] Julian Tugaut. Convergence to the equilibria for self-stabilizing processes in double-

well landscape. The Annals of Probability, 41(3A):1427–1460, 2013.

[108] Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep

latent gaussian models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

[109] Cédric Villani. Topics in optimal transportation. Number 58. American Mathe-

matical Soc., 2003.

[110] Dan Voiculescu. The analogues of entropy and of Fisher’s information measure in

free probability theory, I. Communications in mathematical physics, 155(1):71–92,

1993.

160
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