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Abstract

Physics-based simulation techniques have long been established for various offline applica-

tions, yet real-time dynamic simulation remains a formidable challenge. Despite advance-

ments in modern game engines like Unreal Engine 5, achieving high-resolution, real-time

simulation capabilities remains limited. Recently, researchers have shown interest in us-

ing neural networks to approximate dynamic simulation, thanks to their fast inference on

GPUs. However, although effective at approximating kinematics or quasistatic simulation,

purely data-driven approaches often struggle with dynamic simulations (involving velocity

and momentum information) due to potential overfitting and poor generalization with time

series data. This limitation makes them unsuitable for real-world applications. Other ef-

forts have tried using neural networks to upsample real-time, low-resolution simulations,

but achieving good low-resolution results with conventional methods is very challenging.

This thesis aims to pioneer a paradigm for real-time, high-fidelity physics simulation,

with a focus on practical implementation within current game engines. Motivated by recent

advancements in neural networks for capturing quasistatic simulations (referred to as qua-

sistatic neural networks, or QNNs), we propose to rethink the need for dynamic components

given QNN-based enhancements and redesign real-time physics models to primarily capture

the ballistic motion of full dynamics, which can then be enhanced by QNNs to obtain the

full shape. These meticulously designed physics models ensure stability, robustness, and

performance that surpass real-time requirements. Concurrently, the lightweight QNNs can

capture quasistatic shapes, facilitating ease of training and robust generalization. This the-

sis comprises two primary papers: one addressing human flesh simulation and the other

focusing on the simulation of loose-fitting clothing.
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Chapter 1

Introduction

Physics-based simulation has made remarkable progress in recent decades, becoming a cor-

nerstone technology in the graphics industry. Researchers have developed numerous algo-

rithms to simulate various materials, such as fluids [27, 30, 76], muscles [119, 120, 110], cloth

[5, 10, 11], and hair [6, 102, 81]. These simulations have found widespread applications,

particularly in offline scenarios like visual effects in Hollywood movies [113, 32]. How-

ever, in real-time applications such as video games or AR/VR, existing physics simulation

techniques face challenges in producing high-resolution, high-fidelity results. This is pri-

marily due to the necessity of using low-resolution meshes and large time steps to maintain

real-time performance. Even in advanced game engines like Unreal Engine 5 [26], achiev-

ing high-fidelity simulation in real-time remains a significant technical challenge, despite

impressive advancements in real-time rendering driven by NVIDIA’s real-time ray-tracing

technology [79].

To address these challenges, there has been growing interest in both academia and in-

dustry in using neural networks to approximate high-fidelity physics simulation [43, 85, 97,

98, 82, 20, 100]. This interest is driven by the real-time inference capabilities of neural net-

works on modern GPUs. Research in this area can be broadly classified into two categories:

approximating quasi-static simulation and approximating dynamic simulation.

The first category involves using neural networks to approximate quasi-static simula-

tion. In this scenario, the neural network aims to approximate the result of a steady-state

simulation at each frame without considering temporal dynamics. This means the network

generates mesh deformation directly from the current spatial state without needing histor-

ical information as input. This approach is particularly useful for animating tightly-fitting

1



CHAPTER 1. INTRODUCTION 2

clothing, such as t-shirts and pants [47, 100, 84], as well as for modeling muscle deformations

like bulging or skin wrinkling [4, 3].

The second category focuses on using neural networks to approximate dynamic simu-

lation, which is crucial for generating animations with ballistic or secondary motion, such

as the swinging of loose-fitting clothing like capes or skirts [20, 82, 53], or the jiggling of

flesh and soft tissues on the human body [98, 88]. To approximate dynamic simulation, the

network needs to understand how velocity and momentum work, as it must approximate

the entire trajectory of a second-order ordinary differential equation (ODE) or partial dif-

ferential equation (PDE). Thus, the input to the network must include a temporal history

of spatial states.

Using neural networks to approximate quasi-static simulation has recently seen signif-

icant success and has already been implemented in some real-time industry applications

[62, 25]. In this thesis, I will refer to all neural networks used to estimate quasi-static sim-

ulations as quasistatic neural networks (QNNs). QNNs are successful because they do not

need to capture temporal dynamics, making them easy to train and capable of generalizing

well. In fact, many works use simple fully connected networks as the QNN architecture.

On the other hand, using neural networks to infer dynamic simulation remains a chal-

lenging problem. Although there have been many recent papers on this topic, they are often

not robust or practical enough for industry applications. Recent works usually employ two

strategies to approximate dynamic simulation. The first strategy involves directly using a

time series model, particularly recurrent neural networks (RNNs), to model dynamic simula-

tion. RNNs can memorize information from previous frames and learn to produce secondary

ballistic motion. A popular option is the gated recurrent unit (GRU) [16], used in several

recent papers [82, 98, 142, 23]. More recently, researchers are exploring Transformer archi-

tectures [123] for this purpose [105]. However, training RNNs is challenging due to their

need for temporal information, often leading to overfitting or underfitting and resulting

in poor generalization. Consequently, RNNs struggle to extrapolate to out-of-distribution

data and cannot produce reasonable, physically accurate results over long sequences.

The second strategy involves performing a low-resolution simulation initially and then

using a neural network to upsample it to a high-resolution simulation [53]. This approach is

appealing because the neural network can be a QNN, as secondary dynamics are captured in

the low degrees of freedom. This makes the network easier to train and generalize. However,

achieving a good low-resolution simulation result with conventional methods is challenging.
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Low-resolution simulations often suffer from artifacts such as locking or overstretching,

which depend on the stiffness of the chosen material. Consequently, the dynamics of low-

resolution simulations are often inaccurate.

1.1 Thesis Overview

The goal of my thesis is to achieve high-fidelity dynamic simulation in real-time, with

an algorithm practical enough for potential industry applications. Over the years, we have

gained extensive knowledge about performing cost-effective, low-resolution simulations. Ad-

ditionally, we have learned that neural networks are much better at capturing quasistatic

simulations than dynamic simulations.

Thus, given the success of neural networks for quasistatics, we have rethought and

redesigned real-time physics models for simulating dynamics. On one hand, we still utilize

existing neural network architectures solely to capture quasistatic information. The QNN

architecture is designed to be very lightweight, making it easy to train and highly efficient

during inference. On the other hand, we use physics simulation to capture the secondary

dynamics that are missing from the quasistatic network results. Since QNNs have recently

proven to be highly successful and far better than previous non-neural network methods

at capturing quasistatics, we have re-evaluated the requirements for dynamic components.

Specifically, unlike traditional methods, our physics models primarily handle the ballistic

motion of full dynamics, followed by QNN-based enhancement to recover the full shape.

This allows us to design our physics models to be simple, robust, stable, and free from the

artifacts typically seen in mass-spring simulations, which is crucial for real-time applications.

Both our quasistatic and dynamic components can be easily implemented in applications

for video games and AR/VR.

Our focus is on dynamic simulation related to digital humans, given its significant po-

tential in many real-time graphics applications. Therefore, this thesis primarily contains

two main papers: one on human flesh simulation [48], and another on loose-fitting cloth-

ing simulation [49]. Both of these projects build upon recent advancements in both the

physics simulation and machine learning communities, which have provided the tools and

frameworks necessary for our hybrid approach. Specifically, we leverage QNNs to capture

the quasistatic shape of the mesh. Given the success of QNNs, we directly use well-tested

network architectures from previous works [47]. For dynamic simulation, instead of relying
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on simple low-resolution mass-spring simulations, we develop two novel physics models: one

for flesh and one for cloth.

For human flesh (see Chapter 2), we find that a set of zero-rest-length springs is sur-

prisingly sufficient to model the jiggling motion of the flesh. For loose-fitting garments

(see Chapter 3), we model the cloth as a set of low degrees of freedom, one-dimensional

rope chains, and define an inequality constraint on each rope, inspired by a previous work

on low-resolution cloth simulation [46]. In particular, we designed the rope chain physics

model to simulate loose-fitting clothing that displays large-scale ballistic motion (such as

skirts or capes), rather than loose-fitting clothing that merely deviates from the body and

exhibits minimal ballistic motion (such as an oversized shirt). Both physics models can be

time-integrated in real-time, and we carefully derive the mathematics to ensure that both

methods are not only fast and stable but also practical enough to be implemented in current

game engines.



Chapter 2

Flesh Simulation

2.1 Introduction

Recently, there has been a lot of interest in using neural networks to approximate dynamic

simulation (see e.g. [43, 85, 97, 98]), especially because neural network inference has the

potential to run in real-time (on high-end GPUs). Unfortunately, one requires an exorbitant

amount of training data in order to represent all the possible temporal transitions between

states that these networks aim to model. These networks do not typically generalize well

when not enough training data is used. Even if one had access to the exorbitant amount

of training data required, an unwieldy amount of network parameters would be required to

prevent underfitting.

Some aspects of a dynamic simulation depend mostly on the configuration, whereas

others more strongly depend on the time history of configuration to configuration transi-

tions; thus, we propose the following paradigm. Firstly, we construct a neural network that

depends only on the configurations (and as such cannot capture dynamic modes). Sec-

ondly, we subtract this configuration-only model from the full dynamics in order to obtain

a dynamics layer. Thirdly, we propose a dynamic simulation model that can approximate

the dynamics layer. Theoretically, a well-approximated dynamics layer has the potential

to augment the configuration-only neural network in a way that exactly matches the origi-

nal simulations. Moreover, if the configuration-only neural network can capture enough of

the non-linearities, then the dynamics layer has the potential to be quite simple (and thus

real-time).

In this paper, we propose using a quasistatic physics simulation neural network (see e.g.

5
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Figure 2.1: Our method enhances standard skinning with a configuration-only quasistatic
neural network (QNN) that approximates quasistatic hyperelasticity as well as analytically
integratable zero-restlength springs trained that approximates inertial effects. The QNN
fixes well-known skinning artifacts (e.g. in the shoulder regions) and the zero-restlength
springs add ballistic motion (e.g. in the belly region). We refer readers to our supplementary
video which is far more compelling than still images.

[47, 70, 33, 7]) as the configuration-only neural network. Since quasistatic neural networks

(QNNs) do not have time dependency, they require far less training data and as such can use

a much simpler network structure with far fewer parameters than a network that attempts

to model temporal transitions. Using less training data on a network designed to capture

temporal transitions leads to overfitting and poor generalization to unseen data. Using a

simpler network structure with less parameters on a network designed to capture transitions

leads to underfitting of the training data (and poor generalization).

Although we expect that an entire cottage industry could be developed around the

modelling and real-time simulation of dynamics layers, we propose only a very simple

demonstrational model here (but note that it works surprisingly well). Importantly, the

zero-restlength spring approximation to the dynamics layer can be integrated analytically

and thus has zero truncation error and no time step stability restrictions, making it quite

fast and accurate. Furthermore (as shown in Section 2.7), one can (automatically) robustly

learn spring constitutive parameters from a very small amount of dynamic simulation data.
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2.2 Related Work

Stated-based methods We first discuss prior works that generate elastic deformation

directly from spatial state without considering temporal or configurational history. Many

works aim to upsample a low-resolution simulation to higher resolution: [28] trains a regres-

sor to upsample, [53] learns an upsampling operator, and [14] rasterizes the vertex positions

into an image before upsampling it and interpolating new vertex positions. [126, 144, 139]

use example-based methods to synthesize fine-scale wrinkles from a database. [84] predicts

a low-frequency mesh with a fully connected network and uses a mixture model to add

wrinkles. [15] upsamples with graph convolutional neural networks. [133] recovers high-

frequency geometric details with perturbations of texture. [59] uses a generative adversarial

network (GAN) to upsample a cloth normal map for improved rendering. [4, 3] use neural

networks to drive fine scale details from a coarse character rig. Many works aim to learn

equilibrium configurations from boundary conditions: [70] uses a neural network to add

non-linearity to a linear elasticity model. [74] learns the non-linear mapping from contact

forces to displacements. Such approaches are particularly common in virtual surgery ap-

plications, e.g. [68, 19, 96, 93, 87]. [47] trains a CNN to infer a displacement map which

adds wrinkles to skinned cloth, and [132] improves the accuracy of this approach by em-

bedding the cloth into a volumetric tetrahedral mesh. [7] adds physics to the loss function,

a common approach in physics-inspired neural networks (PINNs), see e.g. [90]. To avoid

the soft constraints of PINNs that only coerce physically-inspired behaviour, [33, 111] add

quasistatic simulation as the final layer of a neural network in order to constrain output to

physically attainable manifolds.

Transition-based methods Here we discuss prior works that use a temporal history

of states, typically for resolving dynamic/inertia related behaviors. In one of the earliest

works (before the deep learning era) [36] uses a neural network to learn temporal transi-

tions and leverage back propagation to optimize control parameters. [20] incorporates an

approximation to the quasistatic equilibrium that serves as a control for a dynamics layer.

[37] predicts a cloth mesh from body poses and previous frames, solving a linear system to

fix penetrations. [40] uses dynamic subspace simulation on an adaptive selected basis gen-

erated from the current body pose. [43] computes a linear subspace of configurations with

principal component analysis (PCA) and learns subspace simulations from previous frames

with a fully connected network. [31, 115, 114] obtain nonlinear subspaces with autoencoder
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networks. Similar methods are commonly used to animate fluids using regression forests

[58] or recurrent neural networks (RNNs) [131]. [85] and [97] use graph networks to learn

simulations with both fixed and changing topology. [15] proposes a transition-based model

with position and linear/angular velocity of the body as network input (in addition to a

state-based model). [73] uses a fully connected network to predict node-wise acceleration for

total Lagrangian explicit dynamics. [22] proposes a convolutional long short-term memory

(LSTM) layer to capture elastic force propagation. [141] uses an image based approach to

enhance detail in low resolution dynamic simulations.

Secondary dynamics for characters Numerical methods that resolve the dynamic

effects of inertia-driven deformation have a long history in computer graphics skin and flesh

animation. We refer interested readers to only a few papers and a plethora of references

therein (e.g. [124, 140, 106, 138, 12]). We note that any of these techniques could be used to

generate training data for learning-based methods. Secondary dynamics for characters have

also been added using data-driven methods: [88] provides a motion capture dataset with

dynamic surface meshes, and proposes a linear auto-regressive model to capture dynamic

displacements compressed by PCA. [69] extends this method to the SMPL human model.

See also [13, 98, 104]. [55] proposes a two layer approach which skins a volumetric body

model as an inner layer and simulates a tetrahedral mesh as an outer layer. The constitutive

parameters of the outer layer are learned from 4D scan data. [143] trains a network to

approximate per-vertex displacements from temporal one-ring state using backward Euler

simulation data of primitive shapes. [22] also uses a one-ring based approach and trains

with forward Euler.

Proportional-derivative control Our analytic zero-restlength spring targeting method

resembles proportional-derivative (PD) control algorithms used in both computer graphics

and robotics. We refer interested readers to several papers leveraging PD control and control

parameter optimization for various usages [1, 130, 127, 42, 21].

2.3 Quasistatic Neural Network

We use the (freely available) MetaHuman [24] which has 122 joints and 13575 vertices as

our human model. Given joint angles θ, we use a skinning function xskin(θ) to get the
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skinned position for each surface vertex. Any reasonable skinning approach (e.g. linear

blend skinning [71, 63] and dual quaternion skinning [51]) may be used.

Starting from θ and xskin(θ), we aim to train a neural network that predicts a more real-

istic surface mesh xnet(θ). Generally speaking, we could add our analytically intergratable

zero-restlength springs directly on top of the skinning result (and there are many interest-

ing skinning-related methods being proposed recently, e.g. [135]), although our proposed

dynamics layer (likely) works best when the shape of the surface skin mesh is approximated

as accurately as possible. We obtain ground truth for xnet(θ) via two different approaches:

quasistatic simulation (as discussed in Section 3.1) and 4D scanning (which will be discussed

in a future paper). Both approaches worked rather well in our experiences.

2.3.1 Quasistatic Simulation

First, we use Tetgen [109] (alternatively, [45],[108] could be used) to create a volumetric

tetrahedron mesh whose boundary corresponds to the Metahuman surface mesh in a refer-

ence A-pose. Next, we interpolate skinning weights from the Metahuman surface vertices

to the tetrahedron mesh boundary vertices, and subsequently solve a Poisson equation on

the tetrahedron mesh to propagate the skinning weights to interior vertices [18]. Then, we

use a geometric approximation to a skeleton in order to specify which interior vertices of

the tetrahedron mesh should follow their skinned positions with either Dirichlet boundary

conditions or zero-restlength spring penalty forces.

Our training dataset includes about 5000 poses genetared randomly, from motion cap-

ture data, and manually specified animations. Given any target pose, specified by a set of

joint angles θ, we solve for the equilibrium configuration of the volumetric tetrahedron mesh

using the method from [121] in order to avoid issues with indefiniteness and the method

from [91] to enforce contact boundary conditions on the surface of the tetrahedron mesh.

Although simulation can be time-consuming, quasistatic simulation is much faster than dy-

namic simulation. Furthermore, the amount of simulation required is significantly smaller

than that which would be needed to obtain similar efficacy for a network aiming to capture

temporal information, since such a network would require far more parameters to prevent

underfitting.
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Figure 2.2: Our QNN resolves well-known skinning collision artifacts. We demonstrate this
in extreme poses involving the back of the knee and the armpit.

2.3.2 QNN

Instead of inferring the positions of the surface vertices directly, we augment the skinning

result xskin(θ) with per-vertex displacements d(θ) so that the non-linearities from joint

rotations θ are mostly captured by the skinning. This reduces the demands on the neural

network allowing for a smaller model and thus requiring less training data. Given ground

truth displacements d(θ), we train our quasistatic neural network (QNN) to minimize the

loss between d(θ) and the network inferred result dnet(θ). We follow an approach similar

to [47] rasterizing the per-vertex displacements into a displacement map image so that a

convolutional neural network (CNN) can be used. Of course, one could alternatively use

PCA with a fully connected network; however, GPUs are more amenable to the image-based

frameworks used by CNNs (see e.g. [125], which discusses the benefit of using data structures

that resemble images on GPUs). Our QNN can fix skinning artifacts like interpenetration

and volume loss (see Figure 2.2), thus providing a simpler dynamics layer for analytic zero-

restlength springs to capture (see Section 2.7 for discussions). Since the QNN is not the

main contribution of this paper, we refer readers to the original paper [47] for technical

details (network architectures, optimizers, hyperparameters, etc.). The QNN used in this

paper can also be easily replaced with other state-based models.
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2.4 Kinematics

The skeletal animation will be queried at a user-specified time scale (likely proportional

to the frame rate). While these samples are inherently discrete, our approach utilizes the

analytic solution of temporal ODEs; therefore, we extend these discrete samples to the

continuous time domain. Specifically, given a sequence of skeletal joint angles
{
θ1,θ2, . . .

}
,

we construct a target function of surface vertex positions x̂(t) defined for all t ≥ 0. Options

include e.g. Heaviside (discontinous), piecewise linear (C0), or cubic (C1) interpolation. We

utilize cubic interpolation given its relative simplicity and favorable continuity. Between

sample n at time tn and sample n + 1 at time tn + ∆t, we define

x̂(tn + s∆t) = q̂n(s∆t)3 + ân(s∆t)2 + b̂ns∆t + ĉn (2.1)

= qns3 + ans2 + bns + cn, (2.2)

where s ∈ [0, 1] and Equation 2.2 absorbs the powers of ∆t into the non-hatted variables for

simplicity of exposition. Enforcing C1 continuity at times tn and tn+1 requires the following

position and derivative constraints
0 0 0 1

0 0 1 0

1 1 1 1

3 2 1 0




qn

an

bn

cn

 =


xnet(θn)

1
2(xnet(θn+1)− xnet(θn−1))

xnet(θn+1)
1
2(xnet(θn+2)− xnet(θn))

 , (2.3)

which can readily be solved to determine qn,an,bn, cn. Here, xnet(θn) = xskin(θn) +

dnet(θn) are QNN-inferred surface vertex positions at time tn. Note, in the first interval,
1
2(xnet(θn+1)− xnet(θn−1)) is replaced by the one-sided difference xnet(θn+1)− xnet(θn).

2.5 Dynamics

We connect a particle (with mass m) to each kinematic vertex x̂(tn + s∆t) using a zero-

restlength spring (although other analytically integratable dynamic models could be used).

The position of each simulated particle obeys Hooke’s law,

ẍ(t) = ks(x̂(t)− x(t)) + kd( ˙̂x(t)− ẋ(t)), (2.4)
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where ks and kd are the spring stiffness and damping (both divided by the mass m) re-

spectively. This equation can be analytically integrated (separately for each particle) to

determine a closed form solution, which varies per interval because qn,an,bn, cn vary.

Consider one interval [tn, tn+1] with initial conditions

xn = x(tn) (2.5)

ẋn = ẋ(tn) (2.6)

determined from the previous interval; then, the closed form solution in this interval can

be written as

x(tn + s∆t) = e−
kd
2
∆tsg(tn + s∆t) + p(tn + s∆t) (2.7)

where s ∈ [0, 1]. Here p(tn + s∆t) is the particular solution associated with the inhomoge-

neous terms arising from the targets x̂(tn + s∆t)

p(tn + s∆t) = x̂(tn + s∆t)− 6qns + 2an

ks∆t2
+

6kdq
n

k2s∆t3
(2.8)

The spring is overdamped when k2d − 4ks > 0, underdamped when k2d − 4ks < 0, and

critically damped when k2d − 4ks = 0. Defining a (unitless) ϵ for both the overdamped case,

ϵ = ∆ts
2

√
k2d − 4ks, and the underdamped case, ϵ = ∆ts

2

√
4ks − k2d, allows us to write

go(tn + s∆t) = γn
1

eϵ + e−ϵ

2
+ γn

2∆ts
eϵ − e−ϵ

2ϵ
(2.9)

gu(tn + s∆t) = γn
1 cos ϵ + γn

2∆ts
sin ϵ

ϵ
(2.10)

gc(tn + s∆t) = γn
1 + γn

2∆ts (2.11)

where go is the overdamped case, gu is the underdamped case, and gc is the critically

damped case. As ϵ → 0, we obtain eϵ+e−ϵ

2 → 1, eϵ−e−ϵ

2ϵ → 1, cos ϵ → 1, sin ϵ
ϵ → 1; thus,

go → gc and gu → gc. In all cases,

γn
1 = xn − p(tn) (2.12)

γn
2 = ẋn +

kd
2
γn
1 − ṗ(tn). (2.13)
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2.6 Learning the constitutive parameters

Given one or more temporal sequences
{
θ1,θ2, . . . ,θN

}
and corresponding dynamic sim-

ulation or motion capture results
{
x1
D,x

2
D, . . . ,x

N
D

}
, we automatically learn constitutive

parameters ks and kd for each spring. For each such temporal sequence, we create a loss

function of the form

L =
N∑

n=1

∥x(tn)− xn
D∥22 (2.14)

where x(tn) is determined as described in Section 2.5. When there is more than one temporal

sequence, the loss function can simply be added together. Notably, the loss can be minimized

separately for each particle in a highly parallel and efficient manner. We use gradient

descent, where initial guesses are obtained from a few iterations of a genetic algorithm [44].

The gradient of L with respect to the parameters kd and ks requires the gradient of

x(tn) with respect to kd and ks, i.e. ∂x
∂kd

and ∂x
∂ks

. From Equation 2.7, one can readily see

that the chain rule takes the form

∂x

∂ks
= e−

kd
2
∆ts ∂g

∂ks
+

∂p

∂ks
(2.15)

∂x

∂kd
= e−

kd
2
∆ts ∂g

∂kd
− ∆ts

2
e−

kd
2
∆tsg +

∂p

∂kd
(2.16)

where ∂g
∂ks

, ∂g
∂kd

, and g all vary based on ϵ, i.e. based on whether ks and kd admit over-

damping, underdamping, or critically damping. As we have seen (see Equation 2.9, 2.10,

2.11 and the discussion thereafter), g is continuous in the 2-dimensional ks-kd phase space;

however, one needs to carefully implement sin ϵ
ϵ and eϵ−e−ϵ

2ϵ to replace potentially spurious

floating point divisions by the asymptotic result when ϵ is small. One can similarly show

that ∂g
∂ks

and ∂g
∂kd

are continuous, and thus ∂x
∂ks

and ∂x
∂kd

are continuous.

To see that ∂g
∂ks

and ∂g
∂kd

are continuous, we expand them via the chain rule

∂g

∂ks
=

∂g

∂γn
1

∂γn
1

∂ks
+

∂g

∂γn
2

∂γn
2

∂ks
+

(
1

ϵ

∂g

∂ϵ

)(
ϵ
∂ϵ

∂ks

)
(2.17)

∂g

∂kd
=

∂g

∂γn
1

∂γn
1

∂kd
+

∂g

∂γn
2

∂γn
2

∂kd
+

(
1

ϵ

∂g

∂ϵ

)(
ϵ
∂ϵ

∂kd

)
(2.18)

and note that ∂g
∂γn

1
and ∂g

∂γn
2

are continuous for the same reasons that g is. As can be seen
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in Equations 2.12 and 2.13,
∂γn

1
∂ks

,
∂γn

1
∂kd

,
∂γn

2
∂ks

, and
∂γn

2
∂kd

recursively depend on the prior interval

via xn and ẋn (and eventually the initial conditions) but add no new discontinuities of

their own. We inserted 1
ϵ and ϵ into the last term in both Equations 2.17 and 2.18 so

that ϵ ∂ϵ
∂ks

= ∓1
2∆t2s2 and ϵ ∂ϵ

∂kd
= ±1

4∆t2s2kd are robust to compute (the ∓ and ± signs

represent overdamping/underdamping respectively). Then, we write

1

ϵ

∂go
∂ϵ

= γn
1

eϵ − e−ϵ

2ϵ
+ γn

2∆ts
(ϵ− 1)eϵ + (ϵ + 1)e−ϵ

2ϵ3
(2.19)

1

ϵ

∂gu
∂ϵ

= −
(
γn
1

sin ϵ

ϵ
+ γn

2∆ts
sin ϵ− ϵ cos ϵ

ϵ3

)
(2.20)

to identify two more functions that must be carefully implemented (as ϵ→ 0, (ϵ−1)eϵ+(ϵ+1)e−ϵ

2ϵ3

→ 1
3 and sin ϵ−ϵ cos ϵ

ϵ3
→ 1

3). The sign difference between Equation 2.19 and 2.20 matches that

in ϵ ∂ϵ
∂ks

and ϵ ∂ϵ
∂kd

showing that both ∂g
∂ϵ

∂ϵ
∂ks

and ∂g
∂ϵ

∂ϵ
∂kd

are continuous.

Finally, it is worth noting that a 2-dimensional gradient cannot be computed on the

codimension-1 curve associated with critically damping; however, taking the dot product

of the continuous (between overdamping and underdamping) gradient with the tangent to

the codimension-1 curve (and adjusting for either ks or kd parameterization) matches the

derivative along the curve as expected.

2.7 Results and Discussion

Figure 2.3 quantitatively illustrates how our approach alleviates the demand on the neural

network for a particular dynamic simulation example (“calisthenics”). Figure 2.3a shows

the ℓ2 norm of the vertex positions (red curve) measured relative to a coordinate system

whose origin is placed on the pelvis joint. Figure 2.3b shows the same result for a single

vertex on the belly. The ℓ2 norm of the displacements from the skinned result (blue curve)

is vastly smaller (as shown in Figures 2.3a and 2.3b), indicating that most of this function

is readily captured via skinning (a number of authors have utilized this approach [88, 98,

104, 47, 69]). In Figures 2.3c and 2.3d, we change the scale so that the blue curve can

be more readily examined. In addition, we also plot the ℓ2 norm of the displacements

from our QNN result (green curve) as the dynamics layer we want to approximate. This

dynamics layer has a relatively small magnitude and low variance (comparably), which is

readily approximated/learned based on a few dynamic simulations of training data. Figures

2.3e and 2.3f show the dynamics layer approximated by our zero-restlength springs (orange
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(a) all vertices averaged (b) one vertex

(c) all vertices averaged (d) one vertex

(e) all vertices averaged (f) one vertex

Figure 2.3: Red curve: ℓ2 norm of vertex positions in the pelvis coordinate system. Blue
curve: ℓ2 norm of displacements from skinning to dynamics. Green curve: ℓ2 norm of
displacements from QNN to dynamics. Orange curve: ℓ2 norm of displacements from QNN
to zero-restlength springs.
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Figure 2.4: Dynamic simulation sequences used to learn zero-restlength spring constitutive
parameters.

curve). Our approach captures the approximated shape, but with smaller magnitude, due to

regularization. However, even with regularization, our method still outputs quite compelling

dynamics (as can be seen in the supplementary video).

As mentioned in Section 2.6, we learn our spring constitutive parameters using a (sur-

prisingly) small amount (less than 100 frames) of ground truth simulation data. We obtain

the dynamic simulation results
{
x1
D,x

2
D, . . . ,x

N
D

}
via backward Euler simulation. Figure 2.4

shows examples of two dynamic simulation sequences (“jumping jacks” and “calisthenics”)

we use to learn zero-restlength spring constitutive parameters. Note that any reasonable

animation sequence with dynamics can be used, even motion capture data (see e.g. [88]).

Although we use a dataset with 5000 data samples in order to train a robust QNN (see

Section 2.3), only a few dynamic simulation examples are required in order to learn zero-

restlength spring constitutive parameters that generalize well to unseen animations. This

also means that we only need to engineer the network architectures and hyperparameters

for the configuration-only QNN, which is much easier than engineering a network that cap-

tures configuration transitions (see Section 2.1 for the discussion about underfitting and

overfitting of transition-based methods). Previous methods that add secondary motions to

characters [88, 13, 98, 104] usually require a large dataset with thousands of data samples

to not overfit their network. In comparison, the minimal need of data from our method

is a great ease for the data generation process. Our method is also unconditionally sta-

ble thanks to its analytic nature, and its optimized constitutive parameters are physically

interpretable.



CHAPTER 2. FLESH SIMULATION 17

Figure 2.5: Comparison of our trained zero-restlength spring ballistic motion with the
corresponding skinned result. Left: a motion sequence included in training. Right: a
motion sequence not included in training. The ability to train on “jumping jacks” and
generalize to “shadow boxing” would be impossible for a typical neural network approach.

2.7.1 Examples

Our analytic zero-restlength spring model generalizes very well to unseen animations and

does not face severe underfitting or overfitting, which is common in machine learning meth-

ods if the network architecture is not carefully designed and trained on a plethora of data.

Figure 2.5 qualitatively shows two example frames comparing a skinning-only result with

our analytic zero-restlength springs added on top of our QNN. The frame on the left (“jump-

ing jacks”) is taken from an animation sequence used in training while the frame on the

right (“shadow boxing”) is taken from an animation sequence not used in training. In both

examples, our method successfully recovers ballistic motion (e.g. in the belly). Our method

runs in real-time (30-90 fps, or even faster pending optimizations) and emulates the effects

of accurate, but costly, dynamic backward Euler simulation remarkably well (the dynamic

backward Euler simulation we use to generate training examples take about 16 minutes per

frame with self-collision enabled). Our approach can be easily applied to different mesh

topologies. Figure 2.6 shows the secondary dynamics added to a low-poly ankylosaurus.

We refer readers to our supplementary video for a compelling demonstration, particularly

of the secondary inertial motion.

Figure 2.7 shows a heatmap visualization of learned ks, kd and the overdamping/ un-

derdamping indicator k2d − 4ks, respectively. Note how symmetric our optimization result
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Figure 2.6: Secondary dynamics are added to a low-poly ankylosaurus. Notice how the
zero-restlength springs (second row) manage to add dynamic motions on top of quasistatic
result (first row), especially around the ears, tail, and back region.

Figure 2.7: Heatmap visualization (logarithm scale) of stiffness ks, damping kd, and k2d−4ks
which determines overdamping/underdamping, respectively. In heavily constrained regions
the springs are stiffer and more overdamped, while in fleshy regions the springs are softer
and more underdamped. Note that more constrained regions occur based on proximity to
the bones used in the dynamic simulation training data (e.g. chest, forearms, shins, etc.).
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(a) X axis

(b) Y axis

(c) Z axis

(d) Loss

Figure 2.8: Robust training in the presence of simulation errors. Subfigures in rows (a)-(c)
are per-axis trajectories of an example vertex in the jumping jack sequence. The backward
Euler trajectory is shown in blue and our analytic zero-restlength spring trajectory is shown
in orange. The high-frequencies in Frames 31-34 are caused by poorly converged dynamics
in the presence of collisions. Subfigures in row (d) show the ℓ2 loss between the zero-
restlength springs and backward Euler. The first column is the initial training result and
the second column is the re-trained result with the 10% highest-loss frames ignored. The
second column more closely follows the backward Euler trajectory for the frames that don’t
have simulation errors.
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is, even if we optimize each particle separately. In regions where rigid motion dominates

(e.g. hands, feet, head, etc.), the optimization results in overdamped springs with large

stiffness. The code can be accelerated by replacing the constitutive parameters of all such

springs with a single set of consitutive parameters. In regions where soft-tissue dynamics

dominates (e.g. belly, thigh, etc.), the optimization results in underdamped springs with

small stiffness. Since our optimization is per particle decoupled, it is easy to troubleshoot

(if necessary).

Full dynamic simulation is costly and prone to instabilities. Often this results in a

few simulated frames with visible errors. To avoid such artifacts, we modify our training

procedure to avoid overfitting to poorly converged frames (that would lead to poor gener-

alization). See Figure 2.8. We note that similar approaches are common in the computer

vision community (see e.g. random sample consensus [29]).

Some artifacts of our methods appear when the QNN is not well trained, resulting in

physically incorrect quasistatic meshes during inference (interpenetrations, not preserving

volume, etc.). This can be constantly improved by better QNN architecture and more

extensive experiments on hyperparameter tuning, and is not the main focus of this pa-

per. Collision artifacts might also appear in the dynamic step (although not noticeable in

our experiments), since our zero-restlength springs method does not handle collisions for

efficiency.

As a final note, one could obviously add our zero-restlength springs on top of the skinned

result directly; however, we obtained better results using our QNN to fix skinning artifacts

due to volume loss and collision.

2.8 Conclusion and Future Work

We present an analytically integratable physics model that can recover dynamic modes in

real-time. The main takeaway is that the problem can be separated into a configuration-only

quasistatic layer and a transition-dependent dynamics layer, where the dynamics layer can

be well approximated by a simple physics model. The constitutive parameters of the physics

model can be robustly learned from only a few backward Euler simulation examples. In par-

ticular, determining ks and kd requires a gradient that can erroneously overflow/underflow

near the critical damping manifold in ks-kd phase space. We quite robustly addressed this
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by isolating non-dimensionalized functions that were trivially carefully implemented to ob-

tain the correct asymptotic result in all cases. For more discussions on both numerical and

analytical issues with gradients, we refer the interested readers to [50, 75].



Chapter 3

Cloth Simulation

3.1 Introduction

Animation of digital clothing has been a captivating research area for decades due to its

importance in creating realistic digital humans. While traditional physics-based simulation

methods [5, 10, 17] can generate high-fidelity results, the inability to achieve real-time

performance at high resolutions restricts their utility in contemporary real-time applications

such as video games, VR/AR, and virtual try-on systems. In light of recent advancements

in GPU hardware, there has been a surge of interest in leveraging neural networks to

approximate physics-based simulations, see e.g. [90, 99, 84, 97, 62, 86]

Tight or close fitting garments such as shirts, pants, etc. typically exhibit only subtle

dynamic behaviors; thus, capturing quasistatic shape information is more important than

modelling the ballistic motion, see e.g. [59, 47, 84, 7]. Quasistatic shape information can be

captured by various skinning techniques, by neural networks that lack temporal information

(we will refer to these as quasistatic neural networks or QNNs), or by a combination of

skinning and quasistatic neural network approaches. While some low-frequency vibration

of tight-fitting clothing can be captured by underlying flesh motion (see e.g. [48]), modelling

the pronounced ballistic motion associated with loose-fitting clothing such as skirts, dresses,

capes, etc. is more challenging. Skinning and QNN based approaches have not been able to

successfully model pronounced ballistic motion; thus, researchers have explored alternative

network architectures that incorporate temporal history, most notably recurrent neural

networks (RNNs), see e.g. [100, 141, 82]. Unfortunately, the amount of training data

required to robustly model temporal transitions between states (especially when considering

22
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Figure 3.1: We introduce a rope chain simulation approach to efficiently model cloth dy-
namics using a small number of degrees of freedom. Analytic signed distance functions
are used to efficiently manage collisions with the body mesh. Neural networks are utilized
to skin a mesh from the simulated degrees of freedom and to capture the detailed mesh
shapes. Our results (the second and fifth images) not only produce dynamics similar to full
numerical simulations (the third and sixth images) but also do not suffer from the locking
and/or overstretching typical of real-time physics-based simulations.

the need for generalization) is significantly greater than that required to model the states

themselves. Moreover, increased network capacity is required in order to properly capture

the numerous state transitions present in this increased volume of training data. These

issues typically cause recurrent neural network approaches to overfit and thus generalize

poorly.

Since a physics-based simulation readily models ballistic motions but does not efficiently

scale to a large number of degrees of freedom and neural networks readily deal with a large

number of degrees of freedom but struggle with temporal state transitions, we pursue a more

optimal hybrid approach that uses a small number of degrees of freedom physics simulation

to capture dynamics and a neural network to capture a high resolution shape. In particular,

we physically simulate such a low number of degrees of freedom that they are best viewed

as virtual bones as opposed to being viewed as a subset of a higher resolution mesh (similar

to [82, 142]); thus, we rely on skinning (driven by a neural network) in order to construct a

coarse approximation to the desired mesh from the simulated degrees of freedom. Given this

coarsely approximated dynamic mesh, a quasistatic neural network is then used to obtain

a more desirable higher resolution mesh.

Since we rely on the neural network’s ability to capture the shape of the cloth, the physics
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simulation does not require all the usual (and computationally expensive) techniques for

simulating stretching, bending, compression, etc.; thus, we devise a novel approach that

connects our virtual bones (or rigid frames) into vertical rope chains. Each rope is designed

to be inextensible yet shrinkable, avoiding undesirable locking or rubbery buckling artifacts

(see [46] for detailed insights). Optional spring forces can be included in order to softly

constrain the distances between different rope chains and/or to regulate the shrinking of

each rope (if desired). Compared to low resolution cloth simulation, the rope chains can

be robustly simulated with large time steps thus enabling real-time performance. Instead

of simulating the rotational (in additional to translational) degrees of freedom typically

required in order to skin a coarse mesh from virtual bones (or rigid frames), we utilize a

neural network so that the garment can be skinned directly from the simulated translational

degrees of freedom.

Collisions between the body and the rope chain degrees of freedom are facilitated via

signed distance functions (SDFs), see e.g. [11]. In order to avoid computationally expensive

grid-based SDFs, the SDF can be defined either by a set of closed-form primitives (desirable

for real-time applications like video games) or by a neural network (see e.g. [83, 92]). Similar

collision treatment can also be applied to the degrees of freedom of the full cloth mesh. Both

the skinning neural network and the QNN are trained with an additional PINN-style [90]

collision loss (using the SDF) in order to obtain network parameters that favor collision-

free cloth mesh degrees of freedom; importantly, adding collisions in this fashion does not

require modifications to the network architecture nor does it add any computational expense

to inference.

To summarize our contributions:

• We propose a hybrid framework for animating loose-fitting clothing that blends to-

gether the efficacy of physics simulation for capturing ballistic motion and the effi-

ciency of neural networks for skinning and shape inference.

• In particular, we propose a novel simulation method for low resolution (and loose-

fitting) clothing via ballistic rope chains, which are used to reconsturct a full cloth

mesh with the aid of neural networks for both skinning and shape inference.

• We propose a novel collision handling method with analytic SDFs, using history-based

information in order to improve both robustness and efficiency for the sake of real-time

applications.
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Figure 3.2: The loose-fitting garments that we use for numerical experiments. The cape
mesh consists of 12690 vertices, and we define 10 rope chains with 13-15 virtual bones in
each chain (reducing the total DOFs by a factor of approximately 90). The skirt mesh
consists of 18546 vertices, and we define 26 rope chains with 9 virtual bones in each chain
(reducing the total DOFs by a factor of approximately 80). Importantly, the large reduction
in the number of DOFs is highly beneficial for both RAM and cache performance, not just
CPU performance. Note that the unattached virtual bones near the top of both the cape
and the skirt are not simulated, but they will be used for skinning (see Section 3.7).

3.2 Related Work

Physics Simulation: The physical simulation of cloth has a long hisory in computer

graphics, dating back to [122]; however, it gained significant popularity due to the implicit

time integration approach proposed in [5]. In order to overcome the overly-damped (un-

derwater) appearance of implicit time integration, [10, 11] introduced a semi-implicit time

integration approach (central differencing in computational mechanics) that is explicit on

the elastic vibrational modes and implicit on the damping modes. Although offline meth-

ods could simulate very high resolution cloth even 15 years ago (see [103]), position based

dynamics (starting with [77]) has been the method of choice for most real-time applica-

tions. Other interesting contributions include discussions on the buckling instability [17],

overcoming locking [46], etc.

Neural Physics: Many researchers have aimed to mimic physics simulations via neural

networks and various other data-driven techniques. Early works include: [20, 40] used a

PCA subspace, [37] predicted a cloth mesh from pose history and body shape, [54] used
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motion graphs, and [88, 69] used linear auto-regression. As deep learning gained popularity,

a number of authors embraced neural networks. [70] used a neural network to add non-linear

displacements on top of linear elasticity. [43] used a neural network in a PCA subspace to

replace time integration. [31, 115, 128] all aimed to integrate state transitions in a latent

space (see also [141]). [97, 15, 86, 67] all used graph neural networks, which can embrace the

typical physics based simulation notion of a stencil (see also [143]). [100, 35] used a PINN-

style objective function. Although PINNs (first proposed in [90]) are self-supervised and

as such do not require ground truth data, there is nothing special about their architecture

implying that they need just as much training data as any other method in order to properly

generalize to unseen data. [105] used Transformers. [66] used three networks to capture

static, coarse, and wrinkle dynamics separately. Most similar to our approach, [82, 142, 23]

used virtual bones, skinning, and/or super-resolution techniques; however, (unlike us) they

used RNNs to animate the virtual bones.

Rigging and Skinning: There is a long history of rigging and skinning in computer

graphics, although not necessarily geared towards cloth animation. We refer interested

readers to [71] for linear blend skinning, [63] for pose space deformation, [57] for weighted

pose space deformation, [51, 52] for dual quaternion skinning, and [94] for a survey. Other

interesting works include the parametric body models in [2] (SCAPE) and [69] (SMPL)

and the joint extraction in [60] (SSDR). It is difficult to skin clothing (especially when it is

loose-fitting) using standard (non-neural) skinning techniques; however, see e.g. [126, 139].

Neural Shape: There have been a number of efforts to infer shape (and appearance, see

[59]) using neural networks. [4] added per-vertex displacements on top of the skinned body

mesh, and [3] similarly added per-vertex displacements on top of a skinned face mesh. [48]

also added per-vertex displacements on top of skinned body mesh, but augmented these

with dynamic motion from analytic springs. For cloth, there have been various attempts

to create a high resolution mesh from the physics simulation of a coarser mesh, see e.g.

[53, 80, 15]. Inferring cloth from body pose and shape alone (without a coarse simulation

mesh) is significantly more difficult, see e.g. [99, 39, 84, 47, 62, 7, 116, 61, 65].

Collisions: The successful approach to cloth-cloth self collisions using continuous collision

detection (CCD) in [10] (which leveraged [89]) led to a plethora of work on improving the

efficiency of O(n log n) collision detection (see e.g. [34, 112, 117, 118, 64]); however, for
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cloth-body collisions, signed distance functions (SDFs) remain prevalent due to their more

efficient O(1) cost (see e.g. [11]). The main drawback of SDFs is that the three dimensional

discretization of the volumetric field is expensive to load and store in memory; thus, analytic

SDFs are more popular for real-time applications (see e.g. [9, 137, 78]). Neural network

approximations to SDFs have the potential to be efficient enough to be used in real-time

applications. Inference is typically fast enough, but the amount of network parameters

required (or new network parameters required, when switching from one SDF to another)

needs to be small enough to be efficiently loaded and/or stored in memory. We refer

the interested reader to [95, 83, 92, 107, 72, 134] for various details (and discussions on

differentiability).

Physics-Informed Neural Networks (PINNs): For neural network inferenced cloth,

the computational burden from processing collisions can be alleviated to some degree by

utilizing interpenetration -free training data. Unfortunately, regularization (which is gen-

erally necessary and desirable) prevents inferenced cloth from being interpenetration-free

even when the training data is interpenetration-free. Thus, PINN-style [90] collision losses

can be quite useful during training (see [101, 7, 8, 39, 100]), as they allow one to increase the

penalty on cloth-body interpenetrations without forcing overfitting to the interpenetration-

free training data. The PINN losses can be made as stiff as desired while otherwise maintain-

ing desirable regularization on the deviation of the cloth from the training data positions.

3.3 Rope Chain Simulation

Given a garment mesh, we define a set of virtual bones distributed across the garment

(either manually or by a procedural algorithm such as SSDR [60]); then, the virtual bones

are interconnected vertically to form a set of simulatable rope chains (see Figure 3.2).

Not only does this significantly reduce the number of degrees of freedom that need to be

simulated, but (we argue that) the rope chains provide a much better approximation to the

desired ballistic degrees of freedom than a rubbery mass-spring mesh does: Rope chains

can be made to swing and rotate freely, whereas a mass-spring system follows linearized

rotations resisted by spring stretching. Rope chains can be made to buckle freely, whereas

a mass-spring system over-resists buckling (locking when under-discretized, see e.g. [46]).
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Figure 3.3: The far left subfigure shows a a coarsely discretized mesh with position con-
straints on the five red nodes. The next three subfigures show the results of steady state
simulations using a decreasing spring stiffness (from left to right). The final subfigure shows
a rope chain simulation (the rope chains are shaded green) of the same degrees of freedom.
The mass-spring simulations lock with stiffer springs and overstrech with weaker springs.
The spring stiffness in the middle subfigure was chosen to approximately match the down-
ward stretching extent of the rope chain simulation, which is what one would expect without
overstretching; however, locking occurs since the springs are still too stiff.



CHAPTER 3. CLOTH SIMULATION 29

Figure 3.4: In this figure, we simulate two virtual bones connected by a single rope with
the top virtual bone fixed and the bottom virtual bone free to rock back and forth as
a pendulum. The results compare well to the analytic solution for pendulum motion for
both shorter times (left) and longer times (right), illustrating the efficacy of our numerical
approach.
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Enforcing inextensibility is trivial (from root to tip) for a rope chain, whereas various ad-

hoc techniques are required in order to prevent over-stretching for a mass-spring simulation.

Etc. See Figure 3.3.

A semi-implicit Newmark style time integration scheme is used separately for each rope

chain (see e.g. [11]):

1. v⃗n+
1
2 = v⃗n + ∆t

2
F⃗ (x⃗n,v⃗n)

M

2. x⃗n+1 = x⃗n + ∆tv⃗n+
1
2

3. Resolve collisions, perturbing x⃗n+1 and v⃗n+
1
2

4. v⃗n+1 = v⃗n+
1
2 + ∆t

2
F⃗ (x⃗n+1,v⃗n+1

2 )
M

This is often referred to as central differencing in the computational mechanics literature.

Central differencing preserves rich high-frequency dynamic motion significantly better than

fully-implicit methods (such as backward Euler) do. The velocity updates (steps 1 and 4)

are discussed in detail in Section 3.4, the position update (step 2) is discussed in detail in

Section 3.5, and collisions (step 3) are discussed in detail in Section 3.6. See Figure 3.4.

3.4 Velocity Update

Given a rope chain, let x⃗0, ..., x⃗m denote the virtual bones from root to tip where x⃗0 is

kinematically constrained to follow some part of the body (or some other object). The

magnitude of each l⃗i = x⃗i − x⃗i−1 should never exceed the maximal length lmax,i of the

corresponding rope; however, there is no penalty for slack (|⃗li| = li < lmax,i) in the rope.

Except for x⃗0, various external forces F⃗ext,i are applied to the virtual bones. Examples

include gravity F⃗g = Mig⃗, wind drag F⃗wind = −cwind(v⃗i− v⃗wind), etc. In order to prevent a

rope chain from deviating too far from its neighboring rope chains, springs can be attached

laterally connecting each virtual bone to its neighbors on neighboring rope chains. We

treat these as soft constraints, meant to influence but not overly dictate the simulation;

thus, they are added to F⃗ext,i and given the same relative importance as gravity, wind drag,

and other similar forces. One may also desire forces that aim to preserve rest angles between

consecutive pairs of virtual bones, in order to coerce the cloth towards its rest shape. These

forces would also be included in F⃗ext,i.
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When a rope reaches its maximal length lmax,i, the two virtual bones it attaches to will

rotate around each other. The magnitude of the centripetal force required to maintain this

rotation is

Fc,i = Mi−1

|(v⃗i−1 − v⃗c)−
(

(v⃗i−1 − v⃗c) · l̂i
)
l̂i|2

|x⃗i−1 − x⃗c|

= Mi

|(v⃗i − v⃗c)−
(

(v⃗i − v⃗c) · l̂i
)
l̂i|2

|x⃗i − x⃗c|
(3.1)

where x⃗c = Mi−1x⃗i−1+Mix⃗i

Mi−1+Mi
is the center of mass, v⃗c = Mi−1v⃗i−1+Miv⃗i

Mi−1+Mi
is the velocity at the

center of mass, and l̂i = l⃗i
li

is unit length (i.e. a direction). For the first rope, which connects

the kinematic x⃗0 with x⃗1, x⃗c = x⃗0 and v⃗c = v⃗0 due to M0 = ∞ (note that second line of

Equation 3.1 needs to be used to calculate Fc,1, in order to avoid dealing with L’Hopital’s

rule in the first line).

When a rope reaches its maximal length lmax,i, an additional tension force with magni-

tude Ti ≥ 0 is added to the non-kinematic virtual bones it attaches to (the kinematic root

ignores these forces). The net force in the virtual bones can be defined via

F⃗net,i = F⃗ext,i − Ti l̂i + Ti+1 l̂i+1 (3.2a)

F⃗net,m = F⃗ext,m − Tm l̂m (3.2b)

where i ∈ {1, ...,m− 1} and Ti = 0 whenever li < lmax,i. In order to preserve the rotational

motion for each taut rope,

F⃗net,1 · l̂1 ≤ −Fc,1 + M1
¨⃗x0 · l̂1 (3.3a)

F⃗net,i · l̂i − F⃗net,i−1 · l̂i ≤ −2Fc,i (3.3b)

where i ∈ {2, ...,m} and the ¨⃗x0 term accounts for the motion of the kinematic root. Sub-

stituting Equations 3.2a and 3.2b into Equations 3.3a and 3.3b gives

−T1 + l̂2 · l̂1T2 ≤ −F⃗ext,1 · l̂1 − Fc,1 + M1
¨⃗x0 · l̂1 (3.4a)

l̂i−1 · l̂iTi−1 − 2Ti + l̂i+1 · l̂iTi+1 ≤ (F⃗ext,i−1 − F⃗ext,i) · l̂i − 2Fc,i (3.4b)

l̂m−1 · l̂mTm−1 − 2Tm ≤ (F⃗ext,m−1 − F⃗ext,m) · l̂m − 2Fc,m (3.4c)
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Figure 3.5: Motion of a single swinging rope chain, showcasing varying numbers of Gauss-
Seidel iterations. Left to right: 1, 5, 10 iterations, and iterating until the relative error is
smaller than a tolerance of 10−6. With more iterations, the rope chain is less damped (as
expected). The same number of iterations (or the same tolerance) was used for both the
tension and impulse computations. Note that it might be more efficient (depending on the
application) to use a different number of iterations on the tension and impulse computations.

where i ∈ {2, ...,m − 1}. This tri-diagonal linear system of inequalities (for the unknown

tension) decouples into separate blocks whenever a slack rope has li < lmax,i or two con-

secutive ropes are orthogonal (with a dot product of zero). For computational efficiency,

we iterate these equations in tip-to-root order (from bottom to top in Equation 3.4) us-

ing Gauss-Seidel; for most real-time applications, typically only one tip-to-root sweep is

required. In particular, we rewrite Equations 3.4a, 3.4b, and 3.4c in reverse order as

Tm ≥
(F⃗ext,m − F⃗ext,m−1) · l̂m + 2Fc,m + l̂m−1 · l̂mTm−1

2
(3.5a)

Ti ≥
(F⃗ext,i − F⃗ext,i−1) · l̂i + 2Fc,i + l̂i−1 · l̂iTi−1 + l̂i+1 · l̂iTi+1

2
(3.5b)

T1 ≥ F⃗ext,1 · l̂1 + Fc,1 −M1
¨⃗x0 · l̂1 + l̂2 · l̂1T2 (3.5c)

and enforce them sequentially (from top to bottom in Equation 3.5) by choosing each Ti

equal to the larger between zero and right hand side.

After solving for Ti via Equation 3.5, Equation 3.2 can be used to find the net force F⃗net,i

on each non-kinematic virtual bone. Given F⃗net,i for each non-kinematic virtual bone, the

velocity can be updated in any order (for both step 1 and step 4 of the time integration); in

addition, the velocity of the kinematic virtual bone (the root) should be updated as well.

The updated velocities may be subject to an additional instantaneous impulse of mag-

nitude Ii ≥ 0 whenever a rope is at its maximal length lmax,i. Let v⃗pre,i and v⃗post,i be the



CHAPTER 3. CLOTH SIMULATION 33

velocity before and after (respectively) this instantaneous exchange of momentum; then,

the impulses along the ropes are applied via

Miv⃗post,i = Miv⃗pre,i − Ii l̂i + Ii+1 l̂i+1 (3.6a)

Mmv⃗post,m = Mmv⃗pre,m − Im l̂m (3.6b)

where i ∈ {1, ...,m − 1} and Ii = 0 whenever li < lmax,i. Note that v⃗post,0 = v⃗pre,0, since

M0 =∞. In order to prevent each taut rope from overstretching,

(v⃗post,i − v⃗post,i−1) · l̂i ≤ 0 (3.7)

must hold, where i ∈ {1, ...,m} . Substituting Equations 3.6a and 3.6b into Equation 3.7

gives

− 1

M1
I1 +

l̂2 · l̂1
M1

I2 ≤ (v⃗pre,0 − v⃗pre,1) · l̂1 (3.8a)

l̂i−1 · l̂i
Mi−1

Ii−1 − (
1

Mi−1
+

1

Mi
)Ii +

l̂i+1 · l̂i
Mi

Ii+1 ≤ (v⃗pre,i−1 − v⃗pre,i) · l̂i (3.8b)

l̂m−1 · l̂m
Mm−1

Im−1 − (
1

Mm−1
+

1

Mm
)Im ≤ (v⃗pre,m−1 − v⃗pre,m) · l̂m (3.8c)

where i ∈ {2, ...,m − 1}. This tri-diagonal linear system of inequalities decouples into

separate blocks whenever a slack rope has li < lmax,i or two consecutive ropes are orthogonal.

For computational efficiency, we iterate these equations in root-to-tip order (from top to

bottom in Equation 3.8) using Gauss-Seidel; for most real-time applications, typically only

one root-to-tip sweep is required. In particular, we rewrite 3.8a, 3.8b, and 3.8c as

I1 ≥M1

(
(v⃗pre,1 − v⃗pre,0) · l̂1 +

l̂2 · l̂1
M1

I2

)
(3.9a)

Ii ≥
Mi−1Mi

Mi−1 + Mi

(
(v⃗pre,i − v⃗pre,i−1) · l̂i +

l̂i−1 · l̂i
Mi−1

Ii−1 +
l̂i+1 · l̂i
Mi

Ii+1

)
(3.9b)

Im ≥
Mm−1Mm

Mm−1 + Mm

(
(v⃗pre,m − v⃗pre,m−1) · l̂m +

l̂m−1 · l̂m
Mm−1

Im−1

)
(3.9c)

and enforce them sequentially (from top to bottom in Equation 3.9) by choosing each Ii

equal to the larger between zero and right hand side.
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Note that we chose tip to root for the tension so that each virtual bone feels the weight

of all the virtual bones below it even when executing only one iteration. Conversely, we

chose root to tip for the impulse since it has been argued (and shown) to work well for

contact resolution in prior works (see e.g. [38]). Figure 3.5 illustrates the results one might

typically expect with different numbers of iterations.

3.5 Position Update

In contrast to the tension and impulse computations discussed in Section 3.4 which ad-

dress force and velocity constraints respectively, a stricter approach is desirable for position

constraints (especially to avoid errors in the rendered visualizations); thus, we execute one

sweep from root to tip on the length of each rope in order to prevent it from exceeding its

maximum length. Each virtual bone is updated from its time tn position to its time tn+1

position by considering both its time tn+
1
2 velocity (computed as described in Section 3.4)

and the rope constraint on its position relative to the previously updated virtual bone (in

the root to tip sweep). That is, x⃗ni is updated to x⃗n+1
i by considering both v⃗

n+ 1
2

i and the

rope that connects the virtual bone to x⃗n+1
i−1 .

When the rope is slack, the virtual bone’s position can evolve freely with no hindrance

from the constraint; however, when the rope is taut, the virtual bone is constrained to rotate

on the sphere about x⃗n+1
i−1 . Approximating this with an

evolve-and-project strategy damps the rotation to the

linearized rotation. This can be seen by projecting the

distance moved in a linearized rotation (colored blue

in the figure) back onto a great circle and noting that

the arc length thus traversed (colored red in the figure)

is smaller than the distance covered in the linearized

rotation, which is the arc length distance that should

have been traversed (the sum of red and green colored

arcs in the figure). Thus, we address the constrained

motion with a non-linearized (actual) rotation.

The tautness of the rope is governed by the

quadratic function

f(s) = |x⃗ni + sv⃗
n+ 1

2
i − x⃗n+1

i−1 |
2 − l2max,i (3.10)
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where f(s) < 0 indicates slack and f(s) > 0 indicates overstretching. When f(∆t) ≤ 0, the

rope is not overstretched at the end of the time step and x⃗n+1
i = x⃗ni + ∆tv⃗

n+ 1
2

i is accepted

as the final position. Otherwise, when f(∆t) > 0, we compute the largest root sroot in the

interval [0,∆t]. If there is no root in the interval, then we set sroot = 0 and project the

overstretched x⃗ni back onto the surface of the sphere via

x⃗ni ← x⃗n+1
i−1 +

x⃗ni − x⃗n+1
i−1

|x⃗ni − x⃗n+1
i−1 |

lmax,i (3.11)

so that it is no longer overstretched. In the interval [0, sroot], the virtual bone is allowed to

move unhindered by the constraint via x⃗srooti = x⃗ni + srootv⃗
n+ 1

2
i . Note that this intentionally

ignores any overstretching in [0, sroot], since such overstretching is overcome automatically

and may only be the (spurious) result of updating the virtual bones one at a time (from

root to tip) as opposed to uniformly.

In the interval [sroot,∆t], the virtual bone is constrained to rotate on the sphere centered

at x⃗n+1
i−1 of radius lmax,i. Given l⃗srooti = x⃗srooti − x⃗n+1

i−1 and l̂srooti =
l⃗
sroot
i

|⃗lsrooti |
, the tangential

velocity

v⃗T = v⃗
n+ 1

2
i − (v⃗

n+ 1
2

i · l̂srooti )l̂srooti (3.12)

is used to determine the distance dT = |v⃗T |(∆t−sroot) the virtual bone rotates on the great

circle specified by the direction v̂T = v⃗T
|v⃗T | . A rotation matrix R is defined to rotate the

virtual bone by an amount θ = dT
lmax,i

about the axis l̂θ = l̂srooti × v̂T via

l⃗n+1
i = R(θ, l̂θ )⃗l

sroot
i (3.13)

to obtain x⃗n+1
i = x⃗n+1

i−1 + l⃗n+1
i .

After the position update, the velocities may no longer satisfy the constraint preventing

overstretching (see Equation 3.7). Thus, new impulses can be computed and applied (fol-

lowing the discussion in the second half of Section 3.4). Alternatively, impulses can instead

be computed and applied after resolving collisions, both after the position update and after

resolving collisions, or deferred entirely (and left unmodified until the end of second velocity

update).
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Figure 3.6: For the sake of computational efficiency, we represent the volumetric body
(left) with a number of analytically defined SDFs (right). Although other representations
(three dimensional grid discretizations, neural representations, etc.) are compatible with
our approach, they incur higher computational costs.

3.6 Collisions

Generally speaking, we follow the method in [11] detecting and processing collisions be-

tween each non-kinematic virtual bone and each signed distance function (SDF). Although

this approach has quite efficient O(1) processing time for each virtual bone, it is computa-

tionally expensive to load three dimensional SDF discretizations into memory; in addition,

the limited memory availability in most real-time systems makes it infeasible to store the

SDFs persistently. Thus, we avoid these costly three dimensional discretizations by utilizing

SDFs that can be defined analytically (see e.g. [9, 137, 78]). See Figure 3.6. Alternatively,

a number of authors have aimed to represent SDFs via neural networks (see e.g. [83, 92]).

If the number of parameters in the neural network can be made to be much smaller than

an equivalently accurate three dimensional discretization, then the computational costs as-

sociated with high demands on memory could be avoided. Instead of aiming to make each

neural SDF utilize less memory than its equivalently accurate three dimensional discretiza-

tion, one could aim to minimize the additional memory burden incurred by switching from

one neural SDF to another (e.g. by using shape descriptors).

Motivated by the cloth-object collision discussion in [103], we propose a modification to
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[11] in order to obtain more robust behavior for real-time applications with coarse discretiza-

tions and large time steps. In the standard approach, an initially non-interpenetrating par-

ticle that ends up in the interior of an SDF is pushed outwards in the ∇ϕ direction until it

reaches the surface of the SDF (or a bit further than the surface when aiming for wrinkle

preservation as discussed in [11]). In contrast, a real-world particle is unable to penetrate

into the interior of an object and instead collides with the surface and responds accordingly.

In the limit as the time step goes to zero and the number of points used to represent the

surface goes to infinity, the standard numerical approach converges to the correct real-world

solution (roughly speaking, ignoring the inability to properly model friction, microscopic

structure, etc.). However, the numerical errors are exacerbated by the large time steps

and the coarse surface discretizations utilized for real-time applications. Although contin-

uous collision detection (CCD) could be used to increase the accuracy while maintaining

a large time step, CCD is too computationally burdensome for most real-time applications

(although progress is being made, see e.g. [64] and the references therein).

The standard approach of evolving a particle into an interpenetrating state and subse-

quently pushing it outwards in the ∇ϕ direction can be thought of as a predictor-corrector

method modeling the actual path of the particle (the path that CCD would aim to trace

out). Aiming to preserve the computational efficiency of the predictor, we propose modify-

ing the corrector in order to obtain a more accurate final state. This can be done efficiently

by choosing a more appropriate direction for push out than ∇ϕ. In fact, ∇ϕ can be highly

erroneous when objects are thin (causing a particle to be pushed to the wrong side) or have

high curvature (causing a particle to be pushed to the wrong direction); moreover, these

errors are exacerbated by the larger time steps typically used in real-time applications.

Given limited information, our ansatz is that the safest push out direction is the reverse

direction along the path the particle traversed as it penetrated into the collision body. At

the very least, this aims to return the particle to the point where a CCD collision would

have occurred.

Assuming the collision body is stationary, the reverse path out of the collision body back

towards the CCD collision point has direction r⃗ = x⃗n − x⃗n+1 where x⃗n+1 is the predicted

position of the particle (penetrating into the collision body). The main difficulty associated

with using this direction is that it is unclear how far the particle should move. There

are several options for addressing this. One could use the local value of |ϕ| as usual, but

this does not necessarily alleviate interpenetration when r̂ = r⃗
|r⃗| and ∇ϕ point in different
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Figure 3.7: Time evolution of a sphere colliding with six particles (6 frames are depicted).
The red particles use the ∇ϕ direction for both push out and velocity projection (as is
typical), the purple particles use r̂ for push out and ∇ϕ for velocity projection, and the
green particles use r̂ for both push out and velocity projection. Note how replacing ∇ϕ
with r̂ prevents the particles from quickly working their way around the sphere. In fact, the
green particles maintain a persistent contact with the sphere until it stops moving shortly
before the last frame (even though friction is not used in this example). The behavior of the
green particles is highly preferable to that of the red (and purple) particles when considering
collisions between clothing and the human body.

directions. Notably, the local value of |ϕ| is always too small, except when r̂ = ∇ϕ in which

case the particle should exactly reach the surface of the collision body. Therefore, one could

iterate the push out a few times in order to better approach the surface. In addition, one

could use a small ϵ > 0 to augment the local value of |ϕ|. This is roughly equivalent to using

an SDF thickened by ϵ or to pushing the particle outwards to the ϕ = ϵ isocontour. Finally,

note that one could use line search (perhaps via bisection), which is equivalent to CCD for

the simple case when the collision body is stationary (CCD is typically much cheaper in

this simple case).

When the collision body is moving, x⃗n is not necessarily non-interpenetrating (since the

collision body may move to cover it); in such a scenario, r̂ is no longer guaranteed to be a

suitable replacement for ∇ϕ. Fortunately, this is easily remedied by analyzing the problem

in the moving frame of the collision body. As the collision body moves and deforms from

time tn to tn+1, we embed the particle to move with it. This guarantees that the new particle

location, denoted x⃗nB, is non-interpenetrating. For example, when the collision body moves

rigidly, that same rigid motion is applied to x⃗n to obtain x⃗nB. For deforming and/or skinned

collision bodies, the deformation/skinning needs to be extended to x⃗n in order to obtain

x⃗nB. This allows r⃗ = x⃗nB − x⃗n+1 to be used as a valid push out direction.
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After the position x⃗n+1 is modified to be collision-free, the velocity v⃗n+
1
2 is modified to

ensure that the relative normal velocity (v⃗n+
1
2 − v⃗ϕ) · N̂ does not point into the SDF via

vnewN = max(v⃗n+
1
2 · N̂ , v⃗ϕ · N̂) (3.14)

where v⃗ϕ is the velocity of the (extended, if necessary) collision body at x⃗n+1, and N̂ may

be chosen as either ∇ϕ or r̂. The relative tangential velocity

v⃗rel,T = v⃗n+
1
2 − v⃗n+

1
2 · N̂ − v⃗ϕ,T (3.15)

is defined using the tangential velocity v⃗ϕ,T = v⃗ϕ − v⃗ϕ · N̂ of the (extended, if necessary)

collision body at x⃗n+1. When the friction coefficient µ is non-zero, the relative tangential

velocity is modified via

v⃗newT = v⃗ϕ,T + max(0, 1− µ
vnewN − v⃗n+

1
2 · N̂

|v⃗rel,T |
)v⃗rel,T (3.16)

as suggested by [10]. The final post collision velocity is given by vnewN N̂ + v⃗newT . See Figure

3.7.

The collisions are processed sequentially from root to tip. Since collisions alter the

positions of the virtual bones, length constraints are enforced in this step as well. This

is accomplished by adjusting the position of a virtual bone via x⃗newi = x⃗i−1 + lmax,i l̂i

whenever li > lmax,i. Of course, this can create new collisions, so back-and-forth iteration

is desirable. The root to tip sweep is done only once, and any back-and-forth iteration

between the collision and the length constraint happens only once for each virtual bone.

We recommend starting this iteration with the length constraint, since it may remove the

need for collisions. We also stress the importance of finishing this iteration with the collision

check in order to preserve a non-interpenetrating state.

3.7 Neural Skinning

After each frame of rope chain simulation, a full cloth mesh needs to be reconstructed for

rendering. After extensive experimentation, we were not able to obtain reasonable results

via any of the standard skinning methods (such as LBS [71] or Dual Quaternion Skinning

[51]). We were also unable to remedy these issues with a corrective quasistatic neural



CHAPTER 3. CLOTH SIMULATION 40

network (see Section 3.8). The difficulties are likely due to the rope chain simulation’s

inability to produce good rotational information for the virtual bones, even with various

procedural modifications. Thus, we took an alternative approach that utilizes a neural

network to infer PCA coefficients for the cloth mesh from the virtual bone translational

degrees of freedom (only). This resulted in a mesh suitable enough for a corrective QNN to

operate on (see Section 3.8).

For each cloth mesh under consideration, we utilize on the order of 5000 frames of

simulated data (any offline simulation system will do) in order to construct a standard

PCA model based on non-rigid displacements from the cloth rest state. The rest state of

the cloth mesh is defined by its steady-state draped position in the rest pose of the body.

Given an animated body pose, the rigid component of the cloth displacement is calculated as

the rigid displacement of a key body part (the neck for the cape and the pelvis for the skirt)

and removed from the cloth displacement in order to obtain its non-rigid displacement.

About 100 PCA basis functions are retained for neural skinning. When the cloth meshes

were converted to rope chains (see Figure 3.2), not all virtual bones were simulated (see the

non-interconnected virtual bones in Figure 3.2); however, these virtual bones are needed in

order to reconstruct the full cloth mesh and as such are also used as input into the neural

skinning network. Given non-rigid displacements of the virtual bones from their positions in

the cloth mesh rest state (their rigid component is identical to that used for the cloth mesh),

the neural skinning network is trained to infer the approximately 100 PCA coefficients used

to reconstruct the full cloth mesh.

We utilize a lightweight 2-layer MLP with 500 neurons per layer. In order to train

the network, the same 5000 frames of simulation data (previously described) is used for

supervision. The virtual bones are embedded in the cloth rest state and barycentrically

enslaved to move with the simulation data yielding the inputs for the network. For each

frame utilized in the data term of the loss function, the network-inferred PCA coefficients are

used to reconstruct a cloth mesh that is compared to the simulation ground truth vertex-

by-vertex via a standard L2 norm. Importantly, each frame is treated as non-sequential

in order to reduce the need for a higher capacity neural network, minimize the burden

associated with collecting more training data, and avoid unnecessary overfitting. We did

not find the need to add any additional terms (such as Laplacians) that would regularize

the cloth mesh, since the use of a PCA model already provides sufficient regularization.

Even when the ground truth cloth meshes used in training do not interpenetrate the
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body, the inferred results will typically contain interpenetrations. This is caused by the

regularization used to combat overfitting and to increase the efficacy of generalization to

unseen data. In order to alleviate interpenetration without adversely affecting desirable

regularization, we include a PINN-style collision loss during training. When a cloth vertex

is found to be interpenetrating, we calculate a suitable non-interpenetrating position for

that vertex (using push out) and include the difference between the vertex and its non-

interpenetrating state in the PINN-style collision loss. The non-interpenetrating state can

be calculated using ∇ϕ as the push out direction along with the ϕ value (with or without

iteration) or CCD to calculate the push out distance. Given the potentially large inaccuracy

of the cloth state during training, ∇ϕ often points in an unhelpful direction; thus, we

instead chose an alternative push out direction r̂ pointing from the current position to the

ground truth position. Note that it can be desirable for the non-interpenetrating state

to be well-separated from the collision body (not just on the zero-isocontour) in order to

create a buffer on the vertices that helps to alleviate edge interpenetrations (and/or to

preserve wrinkling, see e.g. [11]). Since we detach the non-interpenetrating state from the

automatic differentiation graph, an interpenetrating vertex’s contribution to the gradient

from the PINN-style collision loss is parallel to its contribution from the data term. This

can be interpreted as increasing the importance of matching the ground truth for vertices

that are interpenetrating as compared to vertices that are non-interpenetrating; in fact, we

use a weight of 1000 on the PINN-style collision loss and a weight of only 0.1 for the data

term.

It is important to note that there is a large discrepancy between the virtual bone con-

figurations that arise from rope chain simulations and the configurations in the training

data, which are obtained by barycentrically embedding virtual bones in a mass-spring cloth

simulation mesh. That is, we are aiming to make the network generalize well to (sometimes

significantly) out-of-distribution data. The usual process of utilizing holdout data does help

to increase the ability of a network to generalize to unseen data; however, the errors can

still be quite large when the training data and holdout data come from one distribution and

the unseen data comes from another. This is more akin to a domain gap. Both the PINN

collision loss and the regularization obtained via the PCA model help to alleviate these

issues with out-of-distribution unseen data. Even though the network-inferenced cloth may

not follow the dynamic trajectory of the virtual bones as closely as one might prefer, the

cloth tends to have an aesthetically pleasing shape and be interpenetration-free.
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Figure 3.8: Top row: first five principle components of the neural skinning PCA model for
the cape. Bottom row: first five principle components of the neural shape PCA model for
the cape. All of the images depict the augmentation of the rest shape cloth mesh by the
PCA displacements, even though the displacements are added to the skinned mesh (not the
rest state mesh) during neural shape inference. The PCA model used for skinning tends
to capture low-frequency deformations, while the PCA model used for shape inference is
better suited for capturing higher-frequency deformations.

3.8 Neural Shape Inference

Similar to the neural skinning in Section 3.7, we utilize a 2-layer MLP with 500 neurons

per layer in order to inference about 100 PCA coefficients from the non-rigid displacements

of the virtual bones from their positions in the cloth rest state. The same 5000 frames of

simulated data is used for training; however, the PCA model is calculated based on the non-

rigid displacement between the output of the neural skinning network and the ground truth

(see [129] for interesting discussion on multi-stage approaches). While the neural skinning

is responsible for constructing a coarse approximation to the cloth mesh, the neural shape

inference focuses on capturing more of the high-frequency spatial detail. This is obvious

when comparing the two PCA models (See Figure 3.8). Similar to Section 3.7, a PINN-style

collision loss is also included.
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3.9 Results and Discussion

For both the neural skinning and the neural shape networks, we used a weight of 0.1 on

the data term and weight of 1000 on the PINN-style collision loss. The initial learning rate

for Adam [56] was set to 10−4 to train the neural skinning network and 10−5 to train the

neural shape network. A smaller learning rate was specified for the neural shape network,

since its PCA coefficients represent smaller displacements. A cosine annealing schedule was

used to decay the learning rate over epochs. The collision body SDFs were expanded by a

small amount, and only one iteration was used for push out (for computational efficiency).

We obtained our 5000 frames of training data (for both the cape and the skirt) using

Houdini Vellum. 80 percent of the frames were used in the loss function to train the neural

network, and 10 percent of the frames (unseen in training) were used in a validation loss in

order to choose parameters that might generalize well. Figures 3.9 and 3.10 demonstrate the

efficacy of the neural skinning network and the neural shape network respectively. Another

10 percent of the frames were kept as true holdout data, in order to predict the ability of the

networks to generalize to unseen (but still in-distribution) data. See Figure 3.11. Finally,

Figure 3.12 showcases the efficacy of the PINN-style collision loss.

In order to demonstrate how our networks generalize to unseen out-of distribution data

from rope chain simulations, we considered two types of loose-fitting garments: capes and

skirts. See Figures 3.15 and 3.16. Weak lateral springs were added in order to connect

virtual bones from different rope chains (for both the skirt and the cape). Wind drag was

added to the cape virtual bones. Damping, relative to the parent virtual bone in the chain,

was added to the skirt virtual bones. The rope chains were collided against the analytic

SDFs depicted in Figure 3.6. Given the virtual bone positions obtained via rope chain

simulation, we reconstructed the full cloth mesh using the neural skinning and neural shape

networks. Even though the virtual bone positions generated from the rope chain simulations

are out of distribution as compared to the training, validation, and holdout data, Figures

3.15 and 3.16 demonstrate that the networks generalized well and obtained good results.

Finally, we consider an RNN approach. Following the low frequency module in [82], we

trained a Gated Recurrent Unit (GRU) [16]. The inputs are the current body pose and the

latent vector from the prior state, and the outputs are the current virtual bone positions

and the current latent vector. For the sake of a fair comparison, we used the same 5000

frames of (cape) simulation as training data; however, the RNN would obviously benefit
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Figure 3.9: The first row shows the results of the neural skinning network, which can be
compared to the ground truth training data in the second row. In order to demonstrate
that the network does have the ability to match the ground truth data, the third row shows
the overfit results obtained via overtraining; of course, an overfit network will not generalize
well to unseen data.
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Figure 3.10: The first row shows the results of the neural skinning network (identical to
the first row in Figure 3.9). The second row shows the results of the neural shape network
applied on top of the neural skinning result. The third row shows the ground truth training
data. The fourth row shows how overtraining the neural shape network leads to results that
well match (albeit overfit, similar to the last row in Figure 3.9) the ground truth training
data.
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Figure 3.11: The first row shows the results of the neural skinning network, and the second
row shows the results of the neural shape network applied on top of the neural skinning
result. These holdout frames from the training set give some indication of how the network
will perform on unseen data. Note that the network needs to generalize to out-of-distribution
data (from rope chain simulations, as is discussed in the last paragraph in Section 3.7), not
just to holdout frames from the training set.
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Figure 3.12: Comparing the result of a neural skinning network trained without and with
the PINN-style collision loss.

from having access to an increased amount of training data. A separate RNN was trained

for each rope chain. See Figures 3.13 and 3.14. Alternatively, the RNNs could be trained

to match rope chain simulations; however, there is no reason to believe that predicting

out-of-distribution data would fair any better than predicting in-distribution data.

3.10 Conclusion and Future Work

We presented a novel method for the real-time simulation of loose-fitting garments leveraging

neural networks for both skinning and shape inference. We demonstrated that only a small

number of degrees of freedom is necessary in order to capture the ballistic motions. In order

to overcome the locking artifacts typically incurred by using only a small number of degrees

of freedom, we proposed a rope chain simulation method that maintains inextensibilily

while still allowing swinging, rotating, and buckling without resistance. A new history-

based approach to collisions was introduced in order to accommodate fast-moving collision

bodies and large time steps. A neural skinning solution was utilized in order to create a

cloth mesh from the rope chain simulation degrees of freedom, and a quasistatic neural

shape network was subsequently used in order to add additional details. These networks
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Figure 3.13: We trained a separate RNN for each rope chain (10 RNNs in total). The RNN
results (first row) are quite noisy compared to the ground truth training data (second row).
The thrid row shows the overfit results obtained via overtraining. The fourth row shows
the result of applying our neural skinning and neural shape inference to the RNN-inferred
virtual bone positions (from the first row). Comparing these results to the ground truth
training data (fifth row) illustrates that our networks generalize well to this noisy RNN
input.
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Figure 3.14: The main issue with the RNN is that it generalizes very poorly to the holdout
data. Presumably, this issue could be fixed by collecting more and more training data, but
that excessively increases the cost incurred in both data collection (via numerical simulation)
and training (via optimization). Even though our skinning and shape networks can smooth
the noise in this RNN output (as they did in Figure 3.13), the dynamics will still be
completely wrong.

were trained with the aid of a PINN-style collision loss.

Since they are based on the PCA coefficients, the neural skinning and shape net-

works produce reasonable mesh output even with out-of-distribution input; however, out-

of-distrubution input does adversely affect their ability to maintain an interpenetration-free

state. Training the networks with a PINN-style collision loss gives reasonably penetration-

free results for in-distribution data, but not necessarily for out-of-distribution data. Improv-

ing the interpenetration- freeness for out-of-distribution input is perhaps the most important

area for the future work. Although the mesh could be post-processed to be interpenetration-

free, doing so significantly decreases performance and thus the applicability for real-time

applications. It is relatively cheap to process collisions for a small number of virtual bones,

but far more expensive to process collisions for the entire mesh. Other interesting direc-

tions for future work include: making the rope chain simulation differentiable in order to

automatically find constitutive parameters that best match the ground truth, investigating

different network architectures for the neural skinning, generalizing a single network so that

it can be used across different garment types and/or body shapes, etc.
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Figure 3.15: Simulation of a cape on an animation of a running person. First row: rope
chain simulation. The rope chains are shaded green, and the weak lateral springs are
visualized as purple edges. Second row: neural skinning, based on the first row. Third row:
neural shape inference, based on the second row. Fourth row: Houdini cloth simulation
with approximately 12K vertices (as a reference). The Houdini simulation and our rope
chain approach both produce good dynamics, although the Houdini simulation does exhibit
visually displeasing erroneous over-stretching artifacts; in addition, the Houdini simulation
is an order of magnitude slower than our currently unoptimized code.
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Figure 3.16: Simulation of a skirt on an animation of a dancing person. First row: rope
chain simulation. The rope chains are shaded green, and the weak lateral springs are
visualized as purple edges. Second row: neural skinning, based on the first row. Third row:
neural shape inference, based on the second row. Fourth row: Houdini cloth simulation
with approximately 18K vertices (as a reference). The skirt is rendered with a blue color in
order to differentiate it from the yellow skirt figures, which use barycentrically embedded
virtual bone positions instead of rope chain simulations as the network input.
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Conclusion and Future Work

4.1 Conclusion

This dissertation presents a general paradigm for achieving high-resolution, high-fidelity

physics simulation in real-time. The main takeaway of this thesis is rethinking and re-

designing real-time physics models given the significant progress of deep neural networks

for quasistatics. Inspired by the recent advancement of deep neural networks in approxi-

mating quasistatic simulations, we employ a lightweight quasistatic neural network (QNN),

either a fully connected network or a convolutional neural network (CNN), for both flesh and

cloth simulations to efficiently handle quasistatic aspects. Given that QNNs have excelled

at capturing quasistatics in recent years, we rethought the dynamic component and propose

physics models mainly for capturing ballistic motion that are simple but very effective with

QNN-based enhancement. We carefully designed these physics models so that they are not

only fast and stable but also free from the artifacts associated with low-resolution mass-

spring simulations. In Chapter 2, we introduce a zero-restlength spring physics model to

capture the secondary jiggling motion of flesh. This model can be integrated analytically,

ensuring unconditional stability and allowing for the use of arbitrarily large time steps. In

Chapter 3, we propose a 1D rope chain physics model to capture the dynamics of loose-

fitting garments with large-scale ballistic motion. Despite using inequality constraints on

each rope chain, this model can be efficiently solved with only a few Gauss-Seidel itera-

tions. By leveraging QNNs and redesigning physics models for them, our paradigm can be

practically applied in real-world applications, showcasing a promising direction for future

research.

52
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4.2 Future Work

Looking ahead, I am interested in exploring the following research directions:

4.2.1 Collisions

In Chapter 2, we found that a simple zero-restlength spring model can generate visually

collision-free flesh simulations. However, adding a collision step in the analytical solution

could improve robustness. In Chapter 3, although we efficiently handle collisions between

virtual bones and the human body, the QNN-inferred cloth mesh might still suffer from

interpenetrations. We, along with other recent works [101, 7, 8, 39, 100], address this

issue by adding a collision loss during training. Despite its effectiveness on training data,

the network might still output interpenetrated cloth mesh when given data outside the

training set, especially out-of-distribution input. Therefore, a promising future direction is

to develop methods for robustly generating collision-free meshes under all conditions.

4.2.2 Differentiable Simulation

Making our physics model differentiable is an intriguing avenue because it enables the au-

tomatic learning of constitutive parameters from ground truth simulation data. In Chapter

2, we made our zero-restlength spring model differentiable by carefully deriving the partial

derivatives and implementing them robustly in code. The next step is to make our 1D

rope chain simulation from Chapter 3 differentiable, allowing us to learn rope constitutive

parameters from ground truth cloth simulations as well.

4.2.3 Network Architecture

For both our flesh and cloth simulation projects, we use simple fully connected networks or

convolutional neural networks as our QNN architecture for efficiency. Although effective, it

would be interesting to explore other network architectures, such as graph neural networks

(GNNs) [136] and mesh convolutional neural networks (MeshCNNs) [41], which might offer

further improvements in performance and generalization.
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4.2.4 Generalization

To be practically used in real applications, our QNNs and physics models are currently

dedicated to one body type/shape. A compelling research direction is to explore how to

generalize our method for different body shapes. Potential approaches include adding body

shape coefficients as network inputs [83] and automating the virtual bone setup process for

different body shapes using techniques like skin decomposition [60].
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